Let
$$\mathbb {F}_q$$
F
q
be the finite field with q elements and
$$\mathbb {F}_q[x_1,\ldots , x_n]$$
F
q
[
x
1
,
…
,
x
n
]
the ring of polynomials in n variables over
$$\mathbb {F}_q$$
F
q
. In this paper we consider permutation polynomials and local permutation polynomials over
$$\mathbb {F}_q[x_1,\ldots , x_n]$$
F
q
[
x
1
,
…
,
x
n
]
, which define interesting generalizations of permutations over finite fields. We are able to construct permutation polynomials in
$$\mathbb {F}_q[x_1,\ldots , x_n]$$
F
q
[
x
1
,
…
,
x
n
]
of maximum degree
$$n(q-1)-1$$
n
(
q
-
1
)
-
1
and local permutation polynomials in
$$\mathbb {F}_q[x_1,\ldots , x_n]$$
F
q
[
x
1
,
…
,
x
n
]
of maximum degree
$$n(q-2)$$
n
(
q
-
2
)
when
$$q>3$$
q
>
3
, extending previous results.