Open Access
Open access
Afrika Matematika, volume 36, issue 1, publication number 45

Permutation and local permutation polynomials of maximum degree

Jaime Gutierrez 1
Jorge Jiménez Urroz 2
2
 
Departamento de Matemática e Informática aplicadas a la ingeniería civil y naval, Universidad Politécnica de Madrid, Madrid, Spain
Publication typeJournal Article
Publication date2025-01-29
scimago Q3
SJR0.355
CiteScore2.0
Impact factor0.9
ISSN10129405, 21907668
Abstract

Let $$\mathbb {F}_q$$ F q be the finite field with q elements and $$\mathbb {F}_q[x_1,\ldots , x_n]$$ F q [ x 1 , , x n ] the ring of polynomials in n variables over $$\mathbb {F}_q$$ F q . In this paper we consider permutation polynomials and local permutation polynomials over $$\mathbb {F}_q[x_1,\ldots , x_n]$$ F q [ x 1 , , x n ] , which define interesting generalizations of permutations over finite fields. We are able to construct permutation polynomials in $$\mathbb {F}_q[x_1,\ldots , x_n]$$ F q [ x 1 , , x n ] of maximum degree $$n(q-1)-1$$ n ( q - 1 ) - 1 and local permutation polynomials in $$\mathbb {F}_q[x_1,\ldots , x_n]$$ F q [ x 1 , , x n ] of maximum degree $$n(q-2)$$ n ( q - 2 ) when $$q>3$$ q > 3 , extending previous results.

Found 

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex
Found error?