Open Access
On the semigroup of finite order-preserving partial injective contraction mappings
3
Department of Mathematics, Sule Lamido University Kafin-Hausa, Jigawa, Nigeria
|
Publication type: Journal Article
Publication date: 2025-02-04
scimago Q3
wos Q2
SJR: 0.349
CiteScore: 2.1
Impact factor: 0.7
ISSN: 10129405, 21907668
Abstract
We initiate the algebraic study of the semigroup of one-to-one order-preserving partial contraction mappings of a totally ordered set $$\{1,2,\ldots ,n\}$$ , which we denote by $$\mathcal {OCI}_{n}$$ . In particular, we characterise the Green’s relations and their starred analogues in $$\mathcal {OCI}_{n}$$ . We also compute the rank of $$\mathcal {OCI}_{n}$$ as $$2n-1$$ .
Found
Nothing found, try to update filter.
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
0
Total citations:
0
Cite this
GOST |
RIS |
BibTex
Cite this
GOST
Copy
Al-Kharousi F. et al. On the semigroup of finite order-preserving partial injective contraction mappings // Afrika Matematika. 2025. Vol. 36. No. 1. 48
GOST all authors (up to 50)
Copy
Al-Kharousi F., Garba G. U., Ibrahim M. J., Imam A. T., Umar A. On the semigroup of finite order-preserving partial injective contraction mappings // Afrika Matematika. 2025. Vol. 36. No. 1. 48
Cite this
RIS
Copy
TY - JOUR
DO - 10.1007/s13370-025-01259-z
UR - https://link.springer.com/10.1007/s13370-025-01259-z
TI - On the semigroup of finite order-preserving partial injective contraction mappings
T2 - Afrika Matematika
AU - Al-Kharousi, F.
AU - Garba, G U
AU - Ibrahim, M J
AU - Imam, A T
AU - Umar, Abdullahi
PY - 2025
DA - 2025/02/04
PB - Springer Nature
IS - 1
VL - 36
SN - 1012-9405
SN - 2190-7668
ER -
Cite this
BibTex (up to 50 authors)
Copy
@article{2025_Al-Kharousi,
author = {F. Al-Kharousi and G U Garba and M J Ibrahim and A T Imam and Abdullahi Umar},
title = {On the semigroup of finite order-preserving partial injective contraction mappings},
journal = {Afrika Matematika},
year = {2025},
volume = {36},
publisher = {Springer Nature},
month = {feb},
url = {https://link.springer.com/10.1007/s13370-025-01259-z},
number = {1},
pages = {48},
doi = {10.1007/s13370-025-01259-z}
}