Biomedical Materials & Devices

A Novel Approach Utilizing Machine Learning for the Early Diagnosis of Alzheimer's Disease

Khandaker Mohammad Mohi Uddin 1
Mir Jafikul Alam 1
Jannat-E-Anawar 1
Md. Ashraf Uddin 2
Sunil Aryal 2
1
 
Department of Computer Science and Engineering, Dhaka International University, Dhaka, Bangladesh
Publication typeJournal Article
Publication date2023-04-10
SJR
CiteScore
Impact factor
ISSN27314812, 27314820
Abstract
Alzheimer's disease (AD) is one of the leading causes of dementia among older people. In addition, a considerable portion of the world's population suffers from metabolic problems, such as Alzheimer's disease and diabetes. Alzheimer's disease affects the brain in a degenerative manner. As the elderly population grows, this illness can cause more people to become inactive by impairing their memory and physical functionality. This might impact their family members and the financial, economic, and social spheres. Researchers have recently investigated different machine learning and deep learning approaches to detect such diseases at an earlier stage. Early diagnosis and treatment of AD help patients to recover from it successfully and with the least harm. This paper proposes a machine learning model that comprises GaussianNB, Decision Tree, Random Forest, XGBoost, Voting Classifier, and GradientBoost to predict Alzheimer's disease. The model is trained using the open access series of imaging studies (OASIS) dataset to evaluate the performance in terms of accuracy, precision, recall, and F1 score. Our findings showed that the voting classifier attained the highest validation accuracy of 96% for the AD dataset. Therefore, ML algorithms have the potential to drastically lower Alzheimer's disease annual mortality rates through accurate detection.
Found 
Found 

Top-30

Journals

1
2
1
2

Publishers

1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex
Found error?