Open Access
Open access

Robust Ensemble-Based Evolutionary Calibration of the Numerical Wind Wave Model

Тип документаBook Chapter
Дата публикации2019-01-01
Название журналаLecture Notes in Computer Science
ИздательSpringer Nature
Квартиль по SCImagoQ2
Квартиль по Web of Science
Импакт-фактор 2021
ISSN03029743, 16113349
Пристатейные ссылки: 28
Цитируется в публикациях: 1
Ensemble model aggregation using a computationally lightweight machine-learning model to forecast ocean waves
O’Donncha F., Zhang Y., Chen B., James S.C.
Q1 Journal of Marine Systems 2019 цитирований: 10
An Empirical Investigation of the Optimality and Monotonicity Properties of Multiobjective Archiving Methods
Li M., Yao X.
Q2 Lecture Notes in Computer Science 2019 цитирований: 10
Open Access
Open access
A machine learning framework to forecast wave conditions
James S.C., Zhang Y., O'Donncha F.
Q1 Coastal Engineering 2018 цитирований: 108
Robustness Metrics: How Are They Calculated, When Should They Be Used and Why Do They Give Different Results?
McPhail C., Maier H.R., Kwakkel J.H., Giuliani M., Castelletti A., Westra S.
Q1 Earth's Future 2018 цитирований: 91
Open Access
Open access
Bayesian optimization of a hybrid system for robust ocean wave features prediction
Cornejo-Bueno L., Garrido-Merchán E.C., Hernández-Lobato D., Salcedo-Sanz S.
Q1 Neurocomputing 2018 цитирований: 33
A conceptual approach to complex model management with generalized modelling patterns and evolutionary identification
Kovalchuk S.V., Metsker O.G., Funkner A.A., Kisliakovskii I.O., Nikitin N.O., Kalyuzhnaya A.V., Vaganov D.A., Bochenina K.O.
Q1 Complexity 2018 цитирований: 9
Open Access
Open access
Guidance on Setup, Calibration, and Validation of Hydrodynamic, Wave, and Sediment Models for Shelf Seas and Estuaries
Williams J.J., Esteves L.S.
Q2 Advances in Civil Engineering 2017 цитирований: 17
Open Access
Open access
Automatic Model Calibration: A New Way to Improve Numerical Weather Forecasting
Gan Y., Ye A., Miao C., Miao S., Liang X., Fan S.
Q1 Bulletin of the American Meteorological Society 2017 цитирований: 36
Tuning without over-tuning: parametric uncertainty quantification for the NEMO ocean model
Williamson D.B., Blaker A.T., Sinha B.
Q1 Geoscientific Model Development 2017 цитирований: 26
Open Access
Open access
The Art and Science of Climate Model Tuning
Hourdin F., Mauritsen T., Gettelman A., Golaz J., Balaji V., Duan Q., Folini D., Ji D., Klocke D., Qian Y., Rauser F., Rio C., Tomassini L., Watanabe M., Williamson D.
Q1 Bulletin of the American Meteorological Society 2017 цитирований: 238
Half a Billion Simulations: Evolutionary Algorithms and Distributed Computing for Calibrating the Simpoplocal Geographical Model
Schmitt C., Rey-Coyrehourcq S., Reuillon R., Pumain D.
Q1 Environment and Planning B: Planning and Design 2015 цитирований: 19
Learning about physical parameters: the importance of model discrepancy
Brynjarsdóttir J., OʼHagan A.
Q1 Inverse Problems 2014 цитирований: 235
Nearshore SWAN model sensitivities to measured and modelled offshore wave scenarios at an embayed beach compartment, NSW, Australia
Mortlock T., Goodwin I., Turner I.
Q2 Australian Journal of Civil Engineering 2014 цитирований: 9
Analyzing the Climate Sensitivity of the HadSM3 Climate Model Using Ensembles from Different but Related Experiments
Rougier J., Sexton D.M., Murphy J.M., Stainforth D.
Q1 Journal of Climate 2009 цитирований: 123
Метрики
Поделиться
Цитировать
ГОСТ |
Цитировать
1. Vychuzhanin P., Nikitin N. O., Kalyuzhnaya A. V. Robust Ensemble-Based Evolutionary Calibration of the Numerical Wind Wave Model // Computational Science – ICCS 2019. 2019. С. 614–627.
RIS |
Цитировать

TY - GENERIC

DO - 10.1007/978-3-030-22734-0_45

UR - http://dx.doi.org/10.1007/978-3-030-22734-0_45

TI - Robust Ensemble-Based Evolutionary Calibration of the Numerical Wind Wave Model

T2 - Lecture Notes in Computer Science

AU - Vychuzhanin, Pavel

AU - Nikitin, Nikolay O.

AU - Kalyuzhnaya, Anna V.

PY - 2019

PB - Springer International Publishing

SP - 614-627

SN - 0302-9743

SN - 1611-3349

SN - 9783030227333

SN - 9783030227340

ER -

BibTex |
Цитировать

@incollection{Vychuzhanin_2019,

doi = {10.1007/978-3-030-22734-0_45},

url = {https://doi.org/10.1007%2F978-3-030-22734-0_45},

year = 2019,

publisher = {Springer International Publishing},

pages = {614--627},

author = {Pavel Vychuzhanin and Nikolay O. Nikitin and Anna V. Kalyuzhnaya},

title = {Robust Ensemble-Based Evolutionary Calibration of the Numerical Wind Wave Model},

booktitle = {Lecture Notes in Computer Science}

}

MLA
Цитировать
Vychuzhanin, Pavel, et al. “Robust Ensemble-Based Evolutionary Calibration of the Numerical Wind Wave Model.” Computational Science – ICCS 2019, 2019, pp. 614–27. Crossref, https://doi.org/10.1007/978-3-030-22734-0_45.