Natural Computing Series, pages 405-442

Theory of Estimation-of-Distribution Algorithms

Publication typeBook Chapter
Publication date2019-11-21
SJR
CiteScore3.1
Impact factor
ISSN16197127
Abstract
Estimation-of-distribution algorithms (EDAs) are general metaheuristics used in optimization that represent a more recent alternative to classical approaches such as evolutionary algorithms. In a nutshell, EDAs typically do not directly evolve populations of search points but build probabilistic models of promising solutions by repeatedly sampling and selecting points from the underlying search space. Recently, significant progress has been made in the theoretical understanding of EDAs. This chapter provides an up-to-date overview of the most commonly analyzed EDAs and the most recent theoretical results in this area. In particular, emphasis is put on the runtime analysis of simple univariate EDAs, including a description of typical benchmark functions and tools for the analysis. Along the way, open problems and directions for future research are described.
Found 

Top-30

Journals

1
2
3
4
5
1
2
3
4
5

Publishers

2
4
6
8
10
12
2
4
6
8
10
12
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex
Found error?