,
страницы 175-183
Roof Defect Segmentation on Aerial Images Using Neural Networks
Тип публикации: Book Chapter
Дата публикации: 2020-10-02
scimago Q4
SJR: 0.189
CiteScore: 2.3
Impact factor: —
ISSN: 1860949X, 18609503
Краткое описание
The paper describes usage of deep neural networks for flat roof defect segmentation on aerial images. Such architectures as U-Net, DeepLabV3+ and HRNet+ OCR are studied for recognition five categories of roof defects: “hollows”, “swelling”, “folds”, “patches” and “breaks”. Paper introduces RoofD dataset containing 6400 image pairs: aerial photos and corresponding ground truth masks. Based on this dataset different approaches to neural networks training are analyzed. New SDice coefficient with categorical cross-entropy is studied for precise training of U-Net and proposed light U-NetMCT architecture. Weighted categorical cross-entropy is studied for DeepLabV3+ and HRNet+ OCR training. It is shown that these training methods allow correctly recognize rare categories of defects. The state-of-the-art model multi-scale HRNet+ OCR achieves the best quality metric of 0.44 mean IoU. In sense of inference time the fastest model is U-NetMCT and DeeplabV3+ with worse quality of 0.33–0.37 mean IoU. The most difficult category for segmentation is “patches” because of small amount of images with this category in the dataset. Paper also demonstrates the possibility of implementation of the obtained models in the special software for automation of the roof state examination in industry, housing and communal services.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
|
|
|
Journal of Physics: Conference Series
1 публикация, 12.5%
|
|
|
IEEE Transactions on Intelligent Transportation Systems
1 публикация, 12.5%
|
|
|
Bulletin of Belgorod State Technological University named after V G Shukhov
1 публикация, 12.5%
|
|
|
Automation in Construction
1 публикация, 12.5%
|
|
|
Lecture Notes in Computer Science
1 публикация, 12.5%
|
|
|
Journal of Construction Engineering and Management - ASCE
1 публикация, 12.5%
|
|
|
Multimedia Tools and Applications
1 публикация, 12.5%
|
|
|
Studies in Computational Intelligence
1 публикация, 12.5%
|
|
|
1
|
Издатели
|
1
2
3
|
|
|
Springer Nature
3 публикации, 37.5%
|
|
|
IOP Publishing
1 публикация, 12.5%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
1 публикация, 12.5%
|
|
|
BSTU named after V.G. Shukhov
1 публикация, 12.5%
|
|
|
Elsevier
1 публикация, 12.5%
|
|
|
American Society of Civil Engineers (ASCE)
1 публикация, 12.5%
|
|
|
1
2
3
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
8
Всего цитирований:
8
Цитирований c 2024:
5
(62.5%)
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Yudin D. et al. Roof Defect Segmentation on Aerial Images Using Neural Networks // Studies in Computational Intelligence. 2020. pp. 175-183.
ГОСТ со всеми авторами (до 50)
Скопировать
Yudin D., Adeshkin V., Dolzhenko A. V., Polyakov A., Naumov A. Roof Defect Segmentation on Aerial Images Using Neural Networks // Studies in Computational Intelligence. 2020. pp. 175-183.
Цитировать
RIS
Скопировать
TY - GENERIC
DO - 10.1007/978-3-030-60577-3_20
UR - https://doi.org/10.1007/978-3-030-60577-3_20
TI - Roof Defect Segmentation on Aerial Images Using Neural Networks
T2 - Studies in Computational Intelligence
AU - Yudin, D.
AU - Adeshkin, Vasily
AU - Dolzhenko, Alexandr V
AU - Polyakov, Alexandr
AU - Naumov, Andrey
PY - 2020
DA - 2020/10/02
PB - Springer Nature
SP - 175-183
SN - 1860-949X
SN - 1860-9503
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@incollection{2020_Yudin,
author = {D. Yudin and Vasily Adeshkin and Alexandr V Dolzhenko and Alexandr Polyakov and Andrey Naumov},
title = {Roof Defect Segmentation on Aerial Images Using Neural Networks},
publisher = {Springer Nature},
year = {2020},
pages = {175--183},
month = {oct}
}