том 1488 CCIS страницы 72-85

Model-Agnostic Multi-objective Approach for the Evolutionary Discovery of Mathematical Models

Тип публикацииBook Chapter
Дата публикации2021-12-02
scimago Q4
SJR0.182
CiteScore1.1
Impact factor
ISSN18650929, 18650937
Краткое описание
In modern data science, it is often not enough to obtain only a data-driven model with a good prediction quality. On the contrary, it is more interesting to understand the properties of the model, which parts could be replaced to obtain better results. Such questions are unified under machine learning interpretability questions, which could be considered one of the area’s raising topics. In the paper, we use multi-objective evolutionary optimization for composite data-driven model learning to obtain the algorithm’s desired properties. It means that whereas one of the apparent objectives is precision, the other could be chosen as the complexity of the model, robustness, and many others. The method application is shown on examples of multi-objective learning of composite models, differential equations, and closed-form algebraic expressions are unified and form approach for model-agnostic learning of the interpretable models.
Найдено 
Найдено 

Топ-30

Издатели

1
Institute of Electrical and Electronics Engineers (IEEE)
1 публикация, 100%
1
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
1
Поделиться
Цитировать
ГОСТ |
Цитировать
Hvatov A. et al. Model-Agnostic Multi-objective Approach for the Evolutionary Discovery of Mathematical Models // Communications in Computer and Information Science. 2021. Vol. 1488 CCIS. pp. 72-85.
ГОСТ со всеми авторами (до 50) Скопировать
Hvatov A., Maslyaev M., Polonskaya I. S., Sarafanov M., Merezhnikov M., Nikitin N. O. Model-Agnostic Multi-objective Approach for the Evolutionary Discovery of Mathematical Models // Communications in Computer and Information Science. 2021. Vol. 1488 CCIS. pp. 72-85.
RIS |
Цитировать
TY - GENERIC
DO - 10.1007/978-3-030-91885-9_6
UR - https://doi.org/10.1007/978-3-030-91885-9_6
TI - Model-Agnostic Multi-objective Approach for the Evolutionary Discovery of Mathematical Models
T2 - Communications in Computer and Information Science
AU - Hvatov, Alexander
AU - Maslyaev, Mikhail
AU - Polonskaya, Iana S
AU - Sarafanov, Mikhail
AU - Merezhnikov, Mark
AU - Nikitin, Nikolay O
PY - 2021
DA - 2021/12/02
PB - Springer Nature
SP - 72-85
VL - 1488 CCIS
SN - 1865-0929
SN - 1865-0937
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@incollection{2021_Hvatov,
author = {Alexander Hvatov and Mikhail Maslyaev and Iana S Polonskaya and Mikhail Sarafanov and Mark Merezhnikov and Nikolay O Nikitin},
title = {Model-Agnostic Multi-objective Approach for the Evolutionary Discovery of Mathematical Models},
publisher = {Springer Nature},
year = {2021},
volume = {1488 CCIS},
pages = {72--85},
month = {dec}
}