,
страницы 27-46
Materials and Synthesis of Organic Electrode
Тип публикации: Book Chapter
Дата публикации: 2022-04-16
SJR: —
CiteScore: 1.1
Impact factor: —
ISSN: 16121317, 18681212
Краткое описание
The ameliorating urge for energy in consonance with the descending environment and attenuation of natural resources leads to the development of alternate energy storage. Furthermore, they suffer few boundaries like a thermal runaway, safety concerns, high carbon footprint, cost, and less metal content. Those hurdles were the incentive for immense exploration to substitute the electrodes of inorganic with organic. The long cycle stability and rapid kinetics recommend their usage in power regulation, grid storage, and probably in hybrid electric vehicles. An organic electrode material depicts potential for electrochemical energy storage devices for structural diversity, high theoretical capacity, and flexibility. Organic disulfides, polymers of nitroxyl radical, carbonyl compounds conjugated, and conducting polymers are organic materials analyzed as electrode materials. Their compounds have been broadly explored as electrode materials for rapid redox kinetics, higher theoretical capacity, and structural diversity. Tetrahydroxyphenazine, tetraazopentacene, octahydroxytetraazapentacene, cyclic polyketones, triquinoyl are specific compounds for active activity electrode materials delineating higher charge and discharge attributes in aqueous ion batteries with higher theoretical specific capacity. Organic materials are plentiful, flexible, cost-effective, and their fabrication can yield minimal waste and high storage capabilities. There are dianhydrides, phthalocyanines, and quinones, poly(acetylene) was worked as a cathode material followed by many different conjugated polymers such as polythiophene, polypyrrole, polyaniline. Redox and conducting polymers such as sulfur-containing polymers, carbonyl, and nitroxyl radical polymers possess several benefits: abundant resources, film-forming ability, versatile chemical structures, flexibility recyclability, and tunable redox properties all have conversed in this chapter.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
|
|
|
Energy & Fuels
1 публикация, 33.33%
|
|
|
Coke and Chemistry
1 публикация, 33.33%
|
|
|
Mendeleev Communications
1 публикация, 33.33%
|
|
|
1
|
Издатели
|
1
|
|
|
American Chemical Society (ACS)
1 публикация, 33.33%
|
|
|
Allerton Press
1 публикация, 33.33%
|
|
|
OOO Zhurnal "Mendeleevskie Soobshcheniya"
1 публикация, 33.33%
|
|
|
1
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
3
Всего цитирований:
3
Цитирований c 2025:
1
(33.33%)
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Mondal M., Datta A., Bhattacharyya T. K. Materials and Synthesis of Organic Electrode // Analytical Imaging Techniques for Soft Matter Characterization. 2022. pp. 27-46.
ГОСТ со всеми авторами (до 50)
Скопировать
Mondal M., Datta A., Bhattacharyya T. K. Materials and Synthesis of Organic Electrode // Analytical Imaging Techniques for Soft Matter Characterization. 2022. pp. 27-46.
Цитировать
RIS
Скопировать
TY - GENERIC
DO - 10.1007/978-3-030-98021-4_2
UR - https://doi.org/10.1007/978-3-030-98021-4_2
TI - Materials and Synthesis of Organic Electrode
T2 - Analytical Imaging Techniques for Soft Matter Characterization
AU - Mondal, Monojit
AU - Datta, Arkaprava
AU - Bhattacharyya, Tarun K
PY - 2022
DA - 2022/04/16
PB - Springer Nature
SP - 27-46
SN - 1612-1317
SN - 1868-1212
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@incollection{2022_Mondal,
author = {Monojit Mondal and Arkaprava Datta and Tarun K Bhattacharyya},
title = {Materials and Synthesis of Organic Electrode},
publisher = {Springer Nature},
year = {2022},
pages = {27--46},
month = {apr}
}