Natural Computing Series, pages 59-80

Identifying Properties of Real-World Optimisation Problems Through a Questionnaire

Koen van der Blom 1, 2
Timo M Deist 3
Vanessa Volz 4
Mariapia Marchi 5
Yusuke Nojima 6
Boris Naujoks 7
Akira OYAMA 8
Tea Tušar 9
Publication typeBook Chapter
Publication date2023-07-28
SJR
CiteScore3.1
Impact factor
ISSN16197127
Abstract
Optimisation algorithms are commonly compared on benchmarks to get insight into performance differences. However, it is not clear how closely benchmarks match the properties of real-world problems because these properties are largely unknown. This work investigates the properties of real-world problems through a questionnaire to enable the design of future benchmark problems that more closely resemble those found in the real world. The results, while not representative as they are based on only 45 responses, indicate that many problems possess at least one of the following properties: they are constrained, deterministic, have only continuous variables, require substantial computation times for both the objectives and the constraints, or allow a limited number of evaluations. Properties like known optimal solutions and analytical gradients are rarely available, limiting the options in guiding the optimisation process. These are all important aspects to consider when designing realistic benchmark problems. At the same time, the design of realistic benchmarks is difficult, because objective functions are often reported to be black-box and many problem properties are unknown. To further improve the understanding of real-world problems, readers working on a real-world optimisation problem are encouraged to fill out the questionnaire: https://tinyurl.com/opt-survey .
Found 
Found 

Top-30

Journals

1
1

Publishers

1
2
1
2
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex
Found error?