Open Access
Open access
страницы 331-345

End to End Table Transformer

Тип публикацииBook Chapter
Дата публикации2024-09-07
scimago Q2
SJR0.352
CiteScore2.4
Impact factor
ISSN03029743, 16113349, 18612075, 18612083
Краткое описание
Table extraction (TE) task in document images is important in deep learning for conveying structured information. TE was decomposed into three subtasks: table detection (TD), table structure recognition (TSR), and functional analysis (FA). Most of previous research focused on developing models specifically tailored to each of these tasks, leading to challenges in computational cost, model size, and performance limitations. Transformer-based object detection models are being successfully applied to TE subtasks, yet they face inherent challenges due to the one-to-one set matching approach for detecting objects. This approach assigns only a few queries as positive samples, diminishing the training efficacy of these samples and leading to a performance bottleneck. Therefore, prior research in the object detection field has introduced modifications to the Detection Transformer (DETR), adding additional queries and training schemes that improve performance. In this work, we introduce the End-to-end Table Transformer (ETT), a specialized transformer-based object detection model designed for high-performing TE from document images with single model. Our model comprises three key components: a backbone, the Deformable DETR (DDETR) model, and the novel layout analysis module with table layout loss. This layout analysis module leverages explicit relationships between table objects to enhance the table extraction task performance in multi tables in images. We conduct rigorous experiments to assess the efficacy of our proposed model against table extraction benchmark datasets, comparing it with other DETR variants, including vanilla DETR, DDETR, and H-DETR. Empirical evaluations highlight that our model efficiently secures state-of-the-art results in TE task.
Найдено 

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
0
Поделиться
Цитировать
ГОСТ |
Цитировать
Choi Y. Y. et al. End to End Table Transformer // Lecture Notes in Computer Science. 2024. pp. 331-345.
ГОСТ со всеми авторами (до 50) Скопировать
Choi Y. Y., Kim T., Kim N., Lee T., Joe S. End to End Table Transformer // Lecture Notes in Computer Science. 2024. pp. 331-345.
RIS |
Цитировать
TY - GENERIC
DO - 10.1007/978-3-031-70533-5_20
UR - https://link.springer.com/10.1007/978-3-031-70533-5_20
TI - End to End Table Transformer
T2 - Lecture Notes in Computer Science
AU - Choi, Yun Young
AU - Kim, Taehoon
AU - Kim, Namwook
AU - Lee, Taehee
AU - Joe, Seongho
PY - 2024
DA - 2024/09/07
PB - Springer Nature
SP - 331-345
SN - 0302-9743
SN - 1611-3349
SN - 1861-2075
SN - 1861-2083
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@incollection{2024_Choi,
author = {Yun Young Choi and Taehoon Kim and Namwook Kim and Taehee Lee and Seongho Joe},
title = {End to End Table Transformer},
publisher = {Springer Nature},
year = {2024},
pages = {331--345},
month = {sep}
}