Advances in Down Syndrome Research, issue 67, pages 149-158
Cytoskeleton derangement in brain of patients with Down Syndrome, Alzheimer’s disease and Pick’s disease
D POLLAK
1
,
N Cairns
2
,
G Lubec
1, 3
Publication type: Book Chapter
Publication date: 2003-01-01
PubMed ID:
15068247
Abstract
Although cytoskeleton derangement has been reported in brain of patients with neurodegenerative disorders, basic information on integral constituents forming this network including stoichiometric composition is missing. It was therefore the aim of the study to qualitatively and quantitatively evaluate individual proteins of the three major classes representing the cytoskeleton of human brain. Cytoskeleton proteins β-actin (βA), alpha-actinin (Act), tubulin beta-III (βIII), microtubule associated protein 1 (MAP1), neurofilaments NF-L, NF-M and NF-H and neuron specific enolase (NSE), a marker for neuronal density, were determined by immunoblotting. Brain samples (frontal cortex) of controls (CO), patients with Down Syndrome (DS), Alzheimer’s disease (AD) and Pick’s disease (PD) were used for the study. In DS brain βIII, NF-H and NF-M, in AD brain NF-M and NF-H and in PD brain NF-L, NF-M and NF-H were significantly reduced. Stoichiometry of cytoskeleton proteins in control brain revealed the following relations: βA:Act:βIII:MAP1:NF-L:NF-M:NF-H = 1.0:0.8:3.8:2.4:3.2:2.2. This stoichiometrical ratios were aberrant in DS, AD and PD with the main outcome that ratios of members of the neurocytoskeleton (βIII, NF’s) in relation to βA were remarkably decreased. This finding confirms data of decreased neuronal density using NSE in DS and AD. We propose stoichiometry of cytoskeleton elements in normal brain and confirm and extend knowledge on cytoskeleton defects in neurodegenerative diseases. The finding of significantly decreased individual elements may well lead to or represent disassembly of the neurocytoskeleton observed in neurodegenerative diseases.
Found
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.