,
страницы 241-261
The Social Hashtag Recommendation for Image and Video Using Deep Learning Approach
2
A. D. Patel Institute of Technology, CVM University, Anand, India
|
Тип публикации: Book Chapter
Дата публикации: 2023-01-01
SJR: —
CiteScore: —
Impact factor: —
ISSN: 21945357, 21945365
Краткое описание
There has been a lot of interest in the recent year in recommending hashtags for images/videos or posts on social media. Several researchers have researched the impact from numerous perspectives. In this paper, we enhance tag recommendation by recommending suitable hashtags considering both contents of the image/video and users’ history of the hashtag. On the social media image/video-sharing websites (such as Facebook, Instagram, Flickr, and Twitter), users can upload images or videos and tag them with tags. The proposed method generates candidate keywords, i.e., hashtag by combining techniques for textual tags, image and video activity/object recognition content, and acoustic data. To this end, this paper examines different methodologies that associate information that is multi-modal and suggests hashtags for image or video uploader users to generate tags for their images or videos. Although a substantial amount of study has been carried out on item/product recommendations for E-commerce websites, video recommendations for YouTube and Netflix, and friend suggestions on social media websites, research has not been carried out as much on hashtag recommendations for images/video on social media platform/app/websites, which have now turned out to be a vital role of these social media platforms. Here, in this paper, glance at hashtag recommendations for image/video has been carried.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
|
|
|
IET Cyber-Systems and Robotics
1 публикация, 16.67%
|
|
|
Applied Intelligence
1 публикация, 16.67%
|
|
|
Visual Computer
1 публикация, 16.67%
|
|
|
Engineering Applications of Artificial Intelligence
1 публикация, 16.67%
|
|
|
Expert Systems with Applications
1 публикация, 16.67%
|
|
|
1
|
Издатели
|
1
2
|
|
|
Springer Nature
2 публикации, 33.33%
|
|
|
Elsevier
2 публикации, 33.33%
|
|
|
Institution of Engineering and Technology (IET)
1 публикация, 16.67%
|
|
|
1
2
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
6
Всего цитирований:
6
Цитирований c 2024:
3
(50%)
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Panchal P., Prajapati D. J. The Social Hashtag Recommendation for Image and Video Using Deep Learning Approach // Advances in Intelligent Systems and Computing. 2023. pp. 241-261.
ГОСТ со всеми авторами (до 50)
Скопировать
Panchal P., Prajapati D. J. The Social Hashtag Recommendation for Image and Video Using Deep Learning Approach // Advances in Intelligent Systems and Computing. 2023. pp. 241-261.
Цитировать
RIS
Скопировать
TY - GENERIC
DO - 10.1007/978-981-19-5443-6_19
UR - https://doi.org/10.1007/978-981-19-5443-6_19
TI - The Social Hashtag Recommendation for Image and Video Using Deep Learning Approach
T2 - Advances in Intelligent Systems and Computing
AU - Panchal, Priyanka
AU - Prajapati, Dinesh J
PY - 2023
DA - 2023/01/01
PB - Springer Nature
SP - 241-261
SN - 2194-5357
SN - 2194-5365
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@incollection{2023_Panchal,
author = {Priyanka Panchal and Dinesh J Prajapati},
title = {The Social Hashtag Recommendation for Image and Video Using Deep Learning Approach},
publisher = {Springer Nature},
year = {2023},
pages = {241--261},
month = {jan}
}