Computational Complexity, volume 26, issue 2, pages 469-496
The Minimum Oracle Circuit Size Problem
Eric Allender
1
,
Dhiraj Holden
2
,
Valentine Kabanets
3
Publication type: Journal Article
Publication date: 2016-02-17
Journal:
Computational Complexity
scimago Q2
SJR: 0.453
CiteScore: 1.5
Impact factor: 0.7
ISSN: 10163328, 14208954
General Mathematics
Computational Mathematics
Computational Theory and Mathematics
Theoretical Computer Science
Abstract
We consider variants of the minimum circuit size problem MCSP, where the goal is to minimize the size of oracle circuits computing a given function. When the oracle is QBF, the resulting problem MSCP QBF is known to be complete for PSPACE under ZPP reductions. We show that it is not complete under logspace reductions, and indeed it is not even hard for TC 0 under uniform AC 0 reductions. We obtain a variety of consequences that follow if oracle versions of MCSP are hard for various complexity classes under different types of reductions. We also prove analogous results for the problem of determining the resource-bounded Kolmogorov complexity of strings, for certain types of Kolmogorov complexity measures.
Found
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.