том 73 издание 1-4 страницы 509-519

Fused deposition modelling (FDM) process parameter prediction and optimization using group method for data handling (GMDH) and differential evolution (DE)

Farzad Rayegani 1
Godfrey C. Onwubolu 1
1
 
School of Mechanical and Electrical Engineering and Technology, Faculty of Applied Science and Technology, Sheridan Institute of Technology and Advanced Learning, Brampton, Canada
Тип публикацииJournal Article
Дата публикации2014-04-25
scimago Q1
wos Q2
БС1
SJR0.706
CiteScore5.9
Impact factor3.1
ISSN02683768, 14333015
Computer Science Applications
Mechanical Engineering
Industrial and Manufacturing Engineering
Software
Control and Systems Engineering
Краткое описание
This paper presents the research done to determine the functional relationship between process parameters and tensile strength for the fused deposition modelling (FDM) process using the group method for data modelling for prediction purposes. An initial test was carried out to determine whether part orientation and raster angle variations affect the tensile strength. It was found that both process parameters affect tensile strength response. Further experimentations were carried out in which the process parameters considered were part orientation, raster angle, raster width and air gap. The process parameters and the experimental results were submitted to the group method of data handling (GMDH), resulting in predicted output, in which the predicted output values were found to correlate very closely with the measured values. Using differential evolution (DE), optimal process parameters have been found to achieve good strength simultaneously for the response. The mathematical model of the response of the tensile strength with respect to the process parameters comprising part orientation, raster angle, raster width and air gap has been developed based on GMDH, and it has been found that the functionality of the additive manufacturing part produced is improved by optimizing the process parameters. The results obtained are very promising, and hence, the approach presented in this paper has practical application for the design and manufacture of parts using additive manufacturing technologies.
Найдено 
Найдено 

Топ-30

Журналы

5
10
15
20
25
International Journal of Advanced Manufacturing Technology
22 публикации, 7.89%
Rapid Prototyping Journal
16 публикаций, 5.73%
Materials Today: Proceedings
14 публикаций, 5.02%
Progress in Additive Manufacturing
12 публикаций, 4.3%
Additive Manufacturing
9 публикаций, 3.23%
Polymers
6 публикаций, 2.15%
International Journal on Interactive Design and Manufacturing
6 публикаций, 2.15%
IOP Conference Series: Materials Science and Engineering
6 публикаций, 2.15%
Materials
5 публикаций, 1.79%
Procedia Manufacturing
5 публикаций, 1.79%
Composites Part B: Engineering
4 публикации, 1.43%
Lecture Notes in Mechanical Engineering
4 публикации, 1.43%
Journal of Manufacturing and Materials Processing
3 публикации, 1.08%
Applied Sciences (Switzerland)
3 публикации, 1.08%
Advances in Manufacturing
3 публикации, 1.08%
Journal of Materials Engineering and Performance
3 публикации, 1.08%
Journal of Applied Polymer Science
3 публикации, 1.08%
Springer Series in Advanced Manufacturing
3 публикации, 1.08%
Green Manufacturing Processes and Systems
3 публикации, 1.08%
AIP Conference Proceedings
3 публикации, 1.08%
MATEC Web of Conferences
2 публикации, 0.72%
3D Printing and Additive Manufacturing
2 публикации, 0.72%
Journal of Advanced Manufacturing Systems
2 публикации, 0.72%
Journal of Reinforced Plastics and Composites
2 публикации, 0.72%
Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture
2 публикации, 0.72%
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
2 публикации, 0.72%
Machines
2 публикации, 0.72%
Crystals
2 публикации, 0.72%
Journal of the Brazilian Society of Mechanical Sciences and Engineering
2 публикации, 0.72%
5
10
15
20
25

Издатели

10
20
30
40
50
60
70
80
90
Springer Nature
82 публикации, 29.39%
Elsevier
68 публикаций, 24.37%
MDPI
24 публикации, 8.6%
Emerald
19 публикаций, 6.81%
SAGE
14 публикаций, 5.02%
Wiley
13 публикаций, 4.66%
IOP Publishing
11 публикаций, 3.94%
Taylor & Francis
7 публикаций, 2.51%
Institute of Electrical and Electronics Engineers (IEEE)
6 публикаций, 2.15%
EDP Sciences
4 публикации, 1.43%
AIP Publishing
4 публикации, 1.43%
ASME International
3 публикации, 1.08%
World Scientific
3 публикации, 1.08%
Walter de Gruyter
3 публикации, 1.08%
Mary Ann Liebert
2 публикации, 0.72%
Scientific Research Publishing
2 публикации, 0.72%
Research Square Platform LLC
2 публикации, 0.72%
IWA Publishing
2 публикации, 0.72%
American Society of Civil Engineers (ASCE)
1 публикация, 0.36%
Institution of Engineering and Technology (IET)
1 публикация, 0.36%
ASTM International
1 публикация, 0.36%
Cambridge University Press
1 публикация, 0.36%
Hindawi Limited
1 публикация, 0.36%
Institute of Technology and Production Management University of J.E. Purkyne
1 публикация, 0.36%
OAE Publishing Inc.
1 публикация, 0.36%
Autonomous Non-profit Organization Editorial Board of the journal Uspekhi Khimii
1 публикация, 0.36%
Lectito Publications
1 публикация, 0.36%
10
20
30
40
50
60
70
80
90
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
279
Поделиться
Цитировать
ГОСТ |
Цитировать
Rayegani F., Onwubolu G. C. Fused deposition modelling (FDM) process parameter prediction and optimization using group method for data handling (GMDH) and differential evolution (DE) // International Journal of Advanced Manufacturing Technology. 2014. Vol. 73. No. 1-4. pp. 509-519.
ГОСТ со всеми авторами (до 50) Скопировать
Rayegani F., Onwubolu G. C. Fused deposition modelling (FDM) process parameter prediction and optimization using group method for data handling (GMDH) and differential evolution (DE) // International Journal of Advanced Manufacturing Technology. 2014. Vol. 73. No. 1-4. pp. 509-519.
RIS |
Цитировать
TY - JOUR
DO - 10.1007/s00170-014-5835-2
UR - https://doi.org/10.1007/s00170-014-5835-2
TI - Fused deposition modelling (FDM) process parameter prediction and optimization using group method for data handling (GMDH) and differential evolution (DE)
T2 - International Journal of Advanced Manufacturing Technology
AU - Rayegani, Farzad
AU - Onwubolu, Godfrey C.
PY - 2014
DA - 2014/04/25
PB - Springer Nature
SP - 509-519
IS - 1-4
VL - 73
SN - 0268-3768
SN - 1433-3015
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2014_Rayegani,
author = {Farzad Rayegani and Godfrey C. Onwubolu},
title = {Fused deposition modelling (FDM) process parameter prediction and optimization using group method for data handling (GMDH) and differential evolution (DE)},
journal = {International Journal of Advanced Manufacturing Technology},
year = {2014},
volume = {73},
publisher = {Springer Nature},
month = {apr},
url = {https://doi.org/10.1007/s00170-014-5835-2},
number = {1-4},
pages = {509--519},
doi = {10.1007/s00170-014-5835-2}
}
MLA
Цитировать
Rayegani, Farzad, and Godfrey C. Onwubolu. “Fused deposition modelling (FDM) process parameter prediction and optimization using group method for data handling (GMDH) and differential evolution (DE).” International Journal of Advanced Manufacturing Technology, vol. 73, no. 1-4, Apr. 2014, pp. 509-519. https://doi.org/10.1007/s00170-014-5835-2.