Kempe Equivalent List Colorings

Тип публикацииJournal Article
Дата публикации2023-11-16
scimago Q1
wos Q2
БС1
SJR1.269
CiteScore1.9
Impact factor1.0
ISSN02099683, 14396912
Computational Mathematics
Discrete Mathematics and Combinatorics
Краткое описание
An $$\alpha ,\beta $$ -Kempe swap in a properly colored graph interchanges the colors on some component of the subgraph induced by colors $$\alpha $$ and $$\beta $$ . Two k-colorings of a graph are k-Kempe equivalent if we can form one from the other by a sequence of Kempe swaps (never using more than k colors). Las Vergnas and Meyniel showed that if a graph is $$(k-1)$$ -degenerate, then each pair of its k-colorings are k-Kempe equivalent. Mohar conjectured the same conclusion for connected k-regular graphs. This was proved for $$k=3$$ by Feghali, Johnson, and Paulusma (with a single exception $$K_2\square \,K_3$$ , also called the 3-prism) and for $$k\ge 4$$ by Bonamy, Bousquet, Feghali, and Johnson. In this paper we prove an analogous result for list-coloring. For a list-assignment L and an L-coloring $$\varphi $$ , a Kempe swap is called L-valid for $$\varphi $$ if performing the Kempe swap yields another L-coloring. Two L-colorings are called L-equivalent if we can form one from the other by a sequence of L-valid Kempe swaps. Let G be a connected k-regular graph with $$k\ge 3$$ and $$G\ne K_{k+1}$$ . We prove that if L is a k-assignment, then all L-colorings are L-equivalent (again excluding only $$K_2\square \,K_3$$ ). Further, if $$G\in \{K_{k+1},K_2\square \,K_3\}$$ , L is a $$\Delta $$ -assignment, but L is not identical everywhere, then all L-colorings of G are L-equivalent. When $$k\ge 4$$ , the proof is completely self-contained, implying an alternate proof of the result of Bonamy et al. Our proofs rely on the following key lemma, which may be of independent interest. Let H be a graph such that for every degree-assignment $$L_H$$ all $$L_H$$ -colorings are $$L_H$$ -equivalent. If G is a connected graph that contains H as an induced subgraph, then for every degree-assignment $$L_G$$ for G all $$L_G$$ -colorings are $$L_G$$ -equivalent.
Найдено 
Найдено 

Топ-30

Журналы

1
Journal of Graph Theory
1 публикация, 50%
Discrete Applied Mathematics
1 публикация, 50%
1

Издатели

1
Wiley
1 публикация, 50%
Elsevier
1 публикация, 50%
1
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
2
Поделиться
Цитировать
ГОСТ |
Цитировать
Cranston D. W., Mahmoud R. Kempe Equivalent List Colorings // Combinatorica. 2023.
ГОСТ со всеми авторами (до 50) Скопировать
Cranston D. W., Mahmoud R. Kempe Equivalent List Colorings // Combinatorica. 2023.
RIS |
Цитировать
TY - JOUR
DO - 10.1007/s00493-023-00063-2
UR - https://doi.org/10.1007/s00493-023-00063-2
TI - Kempe Equivalent List Colorings
T2 - Combinatorica
AU - Cranston, Daniel W
AU - Mahmoud, Reem
PY - 2023
DA - 2023/11/16
PB - Springer Nature
SN - 0209-9683
SN - 1439-6912
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2023_Cranston,
author = {Daniel W Cranston and Reem Mahmoud},
title = {Kempe Equivalent List Colorings},
journal = {Combinatorica},
year = {2023},
publisher = {Springer Nature},
month = {nov},
url = {https://doi.org/10.1007/s00493-023-00063-2},
doi = {10.1007/s00493-023-00063-2}
}