том 21 издание 10 номер публикации 251

Computational approaches to study the effects of small genomic variations

Тип публикацииJournal Article
Дата публикации2015-09-08
scimago Q3
wos Q3
БС2
SJR0.376
CiteScore3.8
Impact factor2.5
ISSN16102940, 09485023
Catalysis
Organic Chemistry
Inorganic Chemistry
Physical and Theoretical Chemistry
Computer Science Applications
Computational Theory and Mathematics
Краткое описание
Advances in DNA sequencing technologies have led to an avalanche-like increase in the number of gene sequences deposited in public databases over the last decade as well as the detection of an enormous number of previously unseen nucleotide variants therein. Given the size and complex nature of the genome-wide sequence variation data, as well as the rate of data generation, experimental characterization of the disease association of each of these variations or their effects on protein structure/function would be costly, laborious, time-consuming, and essentially impossible. Thus, in silico methods to predict the functional effects of sequence variations are constantly being developed. In this review, we summarize the major computational approaches and tools that are aimed at the prediction of the functional effect of mutations, and describe the state-of-the-art databases that can be used to obtain information about mutation significance. We also discuss future directions in this highly competitive field.
Найдено 
Найдено 

Топ-30

Журналы

1
2
Journal of Molecular Modeling
2 публикации, 10%
Scientific Reports
2 публикации, 10%
BMC Bioinformatics
2 публикации, 10%
BMC Medical Genomics
1 публикация, 5%
Materials
1 публикация, 5%
Journal of Structural and Functional Genomics
1 публикация, 5%
Molecular Biology Reports
1 публикация, 5%
Human Gene
1 публикация, 5%
Informatics in Medicine Unlocked
1 публикация, 5%
PLoS ONE
1 публикация, 5%
Journal of Biological Chemistry
1 публикация, 5%
Gene Reports
1 публикация, 5%
Seminars in Pediatric Neurology
1 публикация, 5%
The Scientific World Journal
1 публикация, 5%
Nucleic Acids Research
1 публикация, 5%
Advanced Science
1 публикация, 5%
1
2

Издатели

1
2
3
4
5
6
7
8
9
Springer Nature
9 публикаций, 45%
Elsevier
4 публикации, 20%
MDPI
1 публикация, 5%
Public Library of Science (PLoS)
1 публикация, 5%
American Society for Biochemistry and Molecular Biology
1 публикация, 5%
Hindawi Limited
1 публикация, 5%
Cold Spring Harbor Laboratory
1 публикация, 5%
Oxford University Press
1 публикация, 5%
Wiley
1 публикация, 5%
1
2
3
4
5
6
7
8
9
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
20
Поделиться
Цитировать
ГОСТ |
Цитировать
Khafizov K. et al. Computational approaches to study the effects of small genomic variations // Journal of Molecular Modeling. 2015. Vol. 21. No. 10. 251
ГОСТ со всеми авторами (до 50) Скопировать
Khafizov K., Ivanov M. V., Glazova O. V., Kovalenko S. P. Computational approaches to study the effects of small genomic variations // Journal of Molecular Modeling. 2015. Vol. 21. No. 10. 251
RIS |
Цитировать
TY - JOUR
DO - 10.1007/s00894-015-2794-y
UR - https://doi.org/10.1007/s00894-015-2794-y
TI - Computational approaches to study the effects of small genomic variations
T2 - Journal of Molecular Modeling
AU - Khafizov, Kamil
AU - Ivanov, Maxim V
AU - Glazova, Olga V
AU - Kovalenko, Sergei P
PY - 2015
DA - 2015/09/08
PB - Springer Nature
IS - 10
VL - 21
PMID - 26350246
SN - 1610-2940
SN - 0948-5023
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2015_Khafizov,
author = {Kamil Khafizov and Maxim V Ivanov and Olga V Glazova and Sergei P Kovalenko},
title = {Computational approaches to study the effects of small genomic variations},
journal = {Journal of Molecular Modeling},
year = {2015},
volume = {21},
publisher = {Springer Nature},
month = {sep},
url = {https://doi.org/10.1007/s00894-015-2794-y},
number = {10},
pages = {251},
doi = {10.1007/s00894-015-2794-y}
}