On Operators all of Which Powers have the same Trace
Тип публикации: Journal Article
Дата публикации: 2019-02-26
scimago Q3
wos Q3
БС2
SJR: 0.276
CiteScore: 2.6
Impact factor: 1.7
ISSN: 00207748, 15729575
Physics and Astronomy (miscellaneous)
General Mathematics
Краткое описание
We introduce the class $K_{\mathcal {A}, \phi }=\{A \in \mathcal {A}: \phi (A^{k})=\phi (A)$ for all $k \in \mathbb {N}\}$ for a linear functional ϕ on an algebra $\mathcal {A}$ and consider the properties of this class. Also we prove the “0–1 number lemma”: if a set $\{z_{k}\}_{k = 1}^{n} \subset \mathbb {C}$ is such that $z_{1}+\ldots +z_{n}={z_{1}^{2}}+\ldots +{z_{n}^{2}}=\cdots =z_{1}^{n + 1}+\ldots +z_{n}^{n + 1}$ , then zk ∈{0,1}, for all k = 1,2,…,n. This lemma helps us to show that $\{\phi (A): A \in K_{\mathcal {A}, \phi }\}=\{0, 1, \ldots , n\}$ and det(A) ∈{0,1} for $\mathcal {A}=\mathbb {M}_{n}(\mathbb {C})$ and ϕ = tr, the canonical trace. We have A = P + Z where P is a projection and Z is a nilpotent for any $A \in K_{\mathcal {A}, \phi }$ . Assume that for a trace class operator A there exists a constant $C \in \mathbb {C}$ such that tr(Ak) = C for all $k \in \mathbb {N}$ . Then $C \in \mathbb {N}\bigcup \{0\}$ and the spectrum σ(A) is a subset of {0,1}. Finally we give the description of all the elements of the class $ K_{\mathcal {A}, \phi }$ for $\mathbb {M}_{2}(\mathbb {C})$ .
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
0
Всего цитирований:
0
Цитировать
ГОСТ |
RIS |
BibTex |
MLA
Цитировать
ГОСТ
Скопировать
Bikchentaev A. M., Ivanshin P. On Operators all of Which Powers have the same Trace // International Journal of Theoretical Physics. 2019. Vol. 60. No. 2. pp. 534-545.
ГОСТ со всеми авторами (до 50)
Скопировать
Bikchentaev A. M., Ivanshin P. On Operators all of Which Powers have the same Trace // International Journal of Theoretical Physics. 2019. Vol. 60. No. 2. pp. 534-545.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1007/s10773-019-04059-x
UR - https://doi.org/10.1007/s10773-019-04059-x
TI - On Operators all of Which Powers have the same Trace
T2 - International Journal of Theoretical Physics
AU - Bikchentaev, Airat M
AU - Ivanshin, Pyotr
PY - 2019
DA - 2019/02/26
PB - Springer Nature
SP - 534-545
IS - 2
VL - 60
SN - 0020-7748
SN - 1572-9575
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2019_Bikchentaev,
author = {Airat M Bikchentaev and Pyotr Ivanshin},
title = {On Operators all of Which Powers have the same Trace},
journal = {International Journal of Theoretical Physics},
year = {2019},
volume = {60},
publisher = {Springer Nature},
month = {feb},
url = {https://doi.org/10.1007/s10773-019-04059-x},
number = {2},
pages = {534--545},
doi = {10.1007/s10773-019-04059-x}
}
Цитировать
MLA
Скопировать
Bikchentaev, Airat M., and Pyotr Ivanshin. “On Operators all of Which Powers have the same Trace.” International Journal of Theoretical Physics, vol. 60, no. 2, Feb. 2019, pp. 534-545. https://doi.org/10.1007/s10773-019-04059-x.
Профили