том 60 издание 2 страницы 534-545

On Operators all of Which Powers have the same Trace

Тип публикацииJournal Article
Дата публикации2019-02-26
scimago Q3
wos Q3
БС2
SJR0.276
CiteScore2.6
Impact factor1.7
ISSN00207748, 15729575
Physics and Astronomy (miscellaneous)
General Mathematics
Краткое описание
We introduce the class $K_{\mathcal {A}, \phi }=\{A \in \mathcal {A}: \phi (A^{k})=\phi (A)$ for all $k \in \mathbb {N}\}$ for a linear functional ϕ on an algebra $\mathcal {A}$ and consider the properties of this class. Also we prove the “0–1 number lemma”: if a set $\{z_{k}\}_{k = 1}^{n} \subset \mathbb {C}$ is such that $z_{1}+\ldots +z_{n}={z_{1}^{2}}+\ldots +{z_{n}^{2}}=\cdots =z_{1}^{n + 1}+\ldots +z_{n}^{n + 1}$ , then zk ∈{0,1}, for all k = 1,2,…,n. This lemma helps us to show that $\{\phi (A): A \in K_{\mathcal {A}, \phi }\}=\{0, 1, \ldots , n\}$ and det(A) ∈{0,1} for $\mathcal {A}=\mathbb {M}_{n}(\mathbb {C})$ and ϕ = tr, the canonical trace. We have A = P + Z where P is a projection and Z is a nilpotent for any $A \in K_{\mathcal {A}, \phi }$ . Assume that for a trace class operator A there exists a constant $C \in \mathbb {C}$ such that tr(Ak) = C for all $k \in \mathbb {N}$ . Then $C \in \mathbb {N}\bigcup \{0\}$ and the spectrum σ(A) is a subset of {0,1}. Finally we give the description of all the elements of the class $ K_{\mathcal {A}, \phi }$ for $\mathbb {M}_{2}(\mathbb {C})$ .
Найдено 

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
0
Поделиться
Цитировать
ГОСТ |
Цитировать
Bikchentaev A. M., Ivanshin P. On Operators all of Which Powers have the same Trace // International Journal of Theoretical Physics. 2019. Vol. 60. No. 2. pp. 534-545.
ГОСТ со всеми авторами (до 50) Скопировать
Bikchentaev A. M., Ivanshin P. On Operators all of Which Powers have the same Trace // International Journal of Theoretical Physics. 2019. Vol. 60. No. 2. pp. 534-545.
RIS |
Цитировать
TY - JOUR
DO - 10.1007/s10773-019-04059-x
UR - https://doi.org/10.1007/s10773-019-04059-x
TI - On Operators all of Which Powers have the same Trace
T2 - International Journal of Theoretical Physics
AU - Bikchentaev, Airat M
AU - Ivanshin, Pyotr
PY - 2019
DA - 2019/02/26
PB - Springer Nature
SP - 534-545
IS - 2
VL - 60
SN - 0020-7748
SN - 1572-9575
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2019_Bikchentaev,
author = {Airat M Bikchentaev and Pyotr Ivanshin},
title = {On Operators all of Which Powers have the same Trace},
journal = {International Journal of Theoretical Physics},
year = {2019},
volume = {60},
publisher = {Springer Nature},
month = {feb},
url = {https://doi.org/10.1007/s10773-019-04059-x},
number = {2},
pages = {534--545},
doi = {10.1007/s10773-019-04059-x}
}
MLA
Цитировать
Bikchentaev, Airat M., and Pyotr Ivanshin. “On Operators all of Which Powers have the same Trace.” International Journal of Theoretical Physics, vol. 60, no. 2, Feb. 2019, pp. 534-545. https://doi.org/10.1007/s10773-019-04059-x.