volume 60 issue 2 pages 534-545

On Operators all of Which Powers have the same Trace

Publication typeJournal Article
Publication date2019-02-26
scimago Q3
wos Q3
SJR0.276
CiteScore2.6
Impact factor1.7
ISSN00207748, 15729575
Physics and Astronomy (miscellaneous)
General Mathematics
Abstract
We introduce the class $K_{\mathcal {A}, \phi }=\{A \in \mathcal {A}: \phi (A^{k})=\phi (A)$ for all $k \in \mathbb {N}\}$ for a linear functional ϕ on an algebra $\mathcal {A}$ and consider the properties of this class. Also we prove the “0–1 number lemma”: if a set $\{z_{k}\}_{k = 1}^{n} \subset \mathbb {C}$ is such that $z_{1}+\ldots +z_{n}={z_{1}^{2}}+\ldots +{z_{n}^{2}}=\cdots =z_{1}^{n + 1}+\ldots +z_{n}^{n + 1}$ , then zk ∈{0,1}, for all k = 1,2,…,n. This lemma helps us to show that $\{\phi (A): A \in K_{\mathcal {A}, \phi }\}=\{0, 1, \ldots , n\}$ and det(A) ∈{0,1} for $\mathcal {A}=\mathbb {M}_{n}(\mathbb {C})$ and ϕ = tr, the canonical trace. We have A = P + Z where P is a projection and Z is a nilpotent for any $A \in K_{\mathcal {A}, \phi }$ . Assume that for a trace class operator A there exists a constant $C \in \mathbb {C}$ such that tr(Ak) = C for all $k \in \mathbb {N}$ . Then $C \in \mathbb {N}\bigcup \{0\}$ and the spectrum σ(A) is a subset of {0,1}. Finally we give the description of all the elements of the class $ K_{\mathcal {A}, \phi }$ for $\mathbb {M}_{2}(\mathbb {C})$ .
Found 

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
0
Share
Cite this
GOST |
Cite this
GOST Copy
Bikchentaev A. M., Ivanshin P. On Operators all of Which Powers have the same Trace // International Journal of Theoretical Physics. 2019. Vol. 60. No. 2. pp. 534-545.
GOST all authors (up to 50) Copy
Bikchentaev A. M., Ivanshin P. On Operators all of Which Powers have the same Trace // International Journal of Theoretical Physics. 2019. Vol. 60. No. 2. pp. 534-545.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1007/s10773-019-04059-x
UR - https://doi.org/10.1007/s10773-019-04059-x
TI - On Operators all of Which Powers have the same Trace
T2 - International Journal of Theoretical Physics
AU - Bikchentaev, Airat M
AU - Ivanshin, Pyotr
PY - 2019
DA - 2019/02/26
PB - Springer Nature
SP - 534-545
IS - 2
VL - 60
SN - 0020-7748
SN - 1572-9575
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2019_Bikchentaev,
author = {Airat M Bikchentaev and Pyotr Ivanshin},
title = {On Operators all of Which Powers have the same Trace},
journal = {International Journal of Theoretical Physics},
year = {2019},
volume = {60},
publisher = {Springer Nature},
month = {feb},
url = {https://doi.org/10.1007/s10773-019-04059-x},
number = {2},
pages = {534--545},
doi = {10.1007/s10773-019-04059-x}
}
MLA
Cite this
MLA Copy
Bikchentaev, Airat M., and Pyotr Ivanshin. “On Operators all of Which Powers have the same Trace.” International Journal of Theoretical Physics, vol. 60, no. 2, Feb. 2019, pp. 534-545. https://doi.org/10.1007/s10773-019-04059-x.
Profiles