том 55 издание 7 страницы 891-895

Machine Learning-Based Mapping for Mineral Exploration

Тип публикацииJournal Article
Дата публикации2023-08-22
scimago Q1
wos Q1
БС2
SJR0.746
CiteScore6.4
Impact factor3.6
ISSN18748961, 18748953
General Earth and Planetary Sciences
Mathematics (miscellaneous)
Краткое описание
We briefly review the state-of-the-art machine learning (ML) algorithms for mineral exploration, which mainly include random forest (RF), convolutional neural network (CNN), and graph convolutional network (GCN). In recent years, RF, a representative shallow machine learning algorithm, and CNN, a representative deep learning approach, have been proved to be powerful tools for ML-based mapping for mineral exploration. In the future, GCN deserves more attention for ML-based mapping for mineral exploration because of its ability to capture the spatial anisotropy of mineralization and its applicability within irregular study areas. Finally, we summarize the original contributions of the six papers comprising this special issue.
Найдено 
Найдено 

Топ-30

Журналы

2
4
6
8
10
12
Ore Geology Reviews
12 публикаций, 22.64%
Natural Resources Research
8 публикаций, 15.09%
Minerals
5 публикаций, 9.43%
Journal of Geochemical Exploration
4 публикации, 7.55%
Earth Science Informatics
3 публикации, 5.66%
Mathematical Geosciences
2 публикации, 3.77%
Remote Sensing Applications: Society and Environment
2 публикации, 3.77%
Fractal and Fractional
1 публикация, 1.89%
Sustainability
1 публикация, 1.89%
Chemie der Erde
1 публикация, 1.89%
International Journal of Disaster Risk Reduction
1 публикация, 1.89%
Computers and Geosciences
1 публикация, 1.89%
Catena
1 публикация, 1.89%
Modeling Earth Systems and Environment
1 публикация, 1.89%
Lithos
1 публикация, 1.89%
Geochemistry: Exploration, Environment, Analysis
1 публикация, 1.89%
Journal of Asian Earth Sciences
1 публикация, 1.89%
Geomatica
1 публикация, 1.89%
Geoscience Data Journal
1 публикация, 1.89%
2
4
6
8
10
12

Издатели

5
10
15
20
25
30
Elsevier
26 публикаций, 49.06%
Springer Nature
14 публикаций, 26.42%
MDPI
7 публикаций, 13.21%
Institute of Electrical and Electronics Engineers (IEEE)
2 публикации, 3.77%
American Geophysical Union
1 публикация, 1.89%
Geological Society of London
1 публикация, 1.89%
Association for Computing Machinery (ACM)
1 публикация, 1.89%
Wiley
1 публикация, 1.89%
5
10
15
20
25
30
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
54
Поделиться
Цитировать
ГОСТ |
Цитировать
Zuo R., Carranza E. J. M. Machine Learning-Based Mapping for Mineral Exploration // Mathematical Geosciences. 2023. Vol. 55. No. 7. pp. 891-895.
ГОСТ со всеми авторами (до 50) Скопировать
Zuo R., Carranza E. J. M. Machine Learning-Based Mapping for Mineral Exploration // Mathematical Geosciences. 2023. Vol. 55. No. 7. pp. 891-895.
RIS |
Цитировать
TY - JOUR
DO - 10.1007/s11004-023-10097-3
UR - https://doi.org/10.1007/s11004-023-10097-3
TI - Machine Learning-Based Mapping for Mineral Exploration
T2 - Mathematical Geosciences
AU - Zuo, Renguang
AU - Carranza, Emmanuel John M.
PY - 2023
DA - 2023/08/22
PB - Springer Nature
SP - 891-895
IS - 7
VL - 55
SN - 1874-8961
SN - 1874-8953
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2023_Zuo,
author = {Renguang Zuo and Emmanuel John M. Carranza},
title = {Machine Learning-Based Mapping for Mineral Exploration},
journal = {Mathematical Geosciences},
year = {2023},
volume = {55},
publisher = {Springer Nature},
month = {aug},
url = {https://doi.org/10.1007/s11004-023-10097-3},
number = {7},
pages = {891--895},
doi = {10.1007/s11004-023-10097-3}
}
MLA
Цитировать
Zuo, Renguang, and Emmanuel John M. Carranza. “Machine Learning-Based Mapping for Mineral Exploration.” Mathematical Geosciences, vol. 55, no. 7, Aug. 2023, pp. 891-895. https://doi.org/10.1007/s11004-023-10097-3.