Artificial intelligence and machine-learning approaches in structure and ligand-based discovery of drugs affecting central nervous system
Vertika Gautam
1, 2
,
Anand Gaurav
3
,
Neeraj Masand
4
,
Vannajan Sanghiran Lee
1
,
Vaishali M. Patil
5
5
Department of Pharmaceutical Chemistry, KIET Group of Institutions, KIET School of Pharmacy, Ghaziabad, India
|
Тип публикации: Journal Article
Дата публикации: 2022-07-11
scimago Q2
wos Q2
БС1
SJR: 0.646
CiteScore: 8.5
Impact factor: 3.8
ISSN: 13811991, 1573501X
PubMed ID:
35819579
Catalysis
Organic Chemistry
Drug Discovery
Inorganic Chemistry
Physical and Theoretical Chemistry
Molecular Biology
General Medicine
Information Systems
Краткое описание
CNS disorders are indications with a very high unmet medical needs, relatively smaller number of available drugs, and a subpar satisfaction level among patients and caregiver. Discovery of CNS drugs is extremely expensive affair with its own unique challenges leading to extremely high attrition rates and low efficiency. With explosion of data in information age, there is hardly any aspect of life that has not been touched by data driven technologies such as artificial intelligence (AI) and machine learning (ML). Drug discovery is no exception, emergence of big data via genomic, proteomic, biological, and chemical technologies has driven pharmaceutical giants to collaborate with AI oriented companies to revolutionise drug discovery, with the goal of increasing the efficiency of the process. In recent years many examples of innovative applications of AI and ML techniques in CNS drug discovery has been reported. Research on therapeutics for diseases such as schizophrenia, Alzheimer’s and Parkinsonism has been provided with a new direction and thrust from these developments. AI and ML has been applied to both ligand-based and structure-based drug discovery and design of CNS therapeutics. In this review, we have summarised the general aspects of AI and ML from the perspective of drug discovery followed by a comprehensive coverage of the recent developments in the applications of AI/ML techniques in CNS drug discovery.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
|
|
|
Ageing Research Reviews
2 публикации, 9.09%
|
|
|
Scientific Reports
1 публикация, 4.55%
|
|
|
Neuropharmacology
1 публикация, 4.55%
|
|
|
Molecular Diversity
1 публикация, 4.55%
|
|
|
Computer Methods and Programs in Biomedicine
1 публикация, 4.55%
|
|
|
Biochimica et Biophysica Acta - Reviews on Cancer
1 публикация, 4.55%
|
|
|
Advances in Media, Entertainment, and the Arts
1 публикация, 4.55%
|
|
|
Expert Opinion on Drug Discovery
1 публикация, 4.55%
|
|
|
Mendeleev Communications
1 публикация, 4.55%
|
|
|
Frontiers in Chemistry
1 публикация, 4.55%
|
|
|
Advances in Bioinformatics and Biomedical Engineering
1 публикация, 4.55%
|
|
|
Molecular Neurobiology
1 публикация, 4.55%
|
|
|
Bioinformatics
1 публикация, 4.55%
|
|
|
European Journal of Pharmacology
1 публикация, 4.55%
|
|
|
Intelligent Pharmacy
1 публикация, 4.55%
|
|
|
Computers in Biology and Medicine
1 публикация, 4.55%
|
|
|
Computers and Industrial Engineering
1 публикация, 4.55%
|
|
|
1
2
|
Издатели
|
2
4
6
8
10
|
|
|
Elsevier
10 публикаций, 45.45%
|
|
|
Springer Nature
3 публикации, 13.64%
|
|
|
IGI Global
2 публикации, 9.09%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
2 публикации, 9.09%
|
|
|
Taylor & Francis
1 публикация, 4.55%
|
|
|
OOO Zhurnal "Mendeleevskie Soobshcheniya"
1 публикация, 4.55%
|
|
|
Frontiers Media S.A.
1 публикация, 4.55%
|
|
|
Oxford University Press
1 публикация, 4.55%
|
|
|
2
4
6
8
10
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
22
Всего цитирований:
22
Цитирований c 2025:
4
(18.18%)
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Gautam V. et al. Artificial intelligence and machine-learning approaches in structure and ligand-based discovery of drugs affecting central nervous system // Molecular Diversity. 2022. Vol. 27. No. 2.
ГОСТ со всеми авторами (до 50)
Скопировать
Gautam V., Gaurav A., Masand N., Lee V. S., M. Patil V. Artificial intelligence and machine-learning approaches in structure and ligand-based discovery of drugs affecting central nervous system // Molecular Diversity. 2022. Vol. 27. No. 2.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1007/s11030-022-10489-3
UR - https://doi.org/10.1007/s11030-022-10489-3
TI - Artificial intelligence and machine-learning approaches in structure and ligand-based discovery of drugs affecting central nervous system
T2 - Molecular Diversity
AU - Gautam, Vertika
AU - Gaurav, Anand
AU - Masand, Neeraj
AU - Lee, Vannajan Sanghiran
AU - M. Patil, Vaishali
PY - 2022
DA - 2022/07/11
PB - Springer Nature
IS - 2
VL - 27
PMID - 35819579
SN - 1381-1991
SN - 1573-501X
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2022_Gautam,
author = {Vertika Gautam and Anand Gaurav and Neeraj Masand and Vannajan Sanghiran Lee and Vaishali M. Patil},
title = {Artificial intelligence and machine-learning approaches in structure and ligand-based discovery of drugs affecting central nervous system},
journal = {Molecular Diversity},
year = {2022},
volume = {27},
publisher = {Springer Nature},
month = {jul},
url = {https://doi.org/10.1007/s11030-022-10489-3},
number = {2},
doi = {10.1007/s11030-022-10489-3}
}