FakeIDCA: Fake news detection with incremental deep learning based concept drift adaption
2
Dr. D. Y. Patil Institute of Technology, Pune, India
|
Тип публикации: Journal Article
Дата публикации: 2023-09-06
scimago Q1
БС1
SJR: 0.777
CiteScore: 7.7
Impact factor: —
ISSN: 13807501, 15737721
Hardware and Architecture
Computer Networks and Communications
Software
Media Technology
Краткое описание
Social media facilitates rapid information sharing, improving exposure, connections, and content promotion. However, it also poses the challenge of fake news, which can mislead and harm individuals physically, and mentally, and incite violence. Fake news is often known as incorrect or misleading information. Prior research used Machine Learning (ML) and Deep Learning (DL) techniques for fake news detection. These studies predominantly relied on static offline models, overlooking the dynamic and evolving nature of news patterns, assuming their stability over time. Our paper proposes an incremental ensemble neural network for fake news detection that continuously learns from fake news streams, adapting to changes. It employs performance-based pruning to eliminate underperforming classifiers, improving overall performance. Additionally, the model detects concept drift in real-time and triggers adaptation strategies to maintain accuracy and robustness. The models undergo evaluation in two scenarios, utilizing consistent news patterns for training and testing, demonstrating consistent performance among all ML and incremental models. In the second scenario, the study analyzes the impact of news patterns over time, including concept drift due to significant events like the United States election. The analysis reveals that offline-trained methods are susceptible to performance degradation. However, the proposed model exhibits consistent performance with an accuracy of 97.90% and 99.76% on two fake news datasets, despite changes in the news pattern over time. The findings demonstrate how the evolution of the news pattern impacts the effectiveness of fake news detection models. The proposed model used for the experimentation indicates consistent performance even in the presence of drift.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
|
|
|
IEEE Access
1 публикация, 16.67%
|
|
|
Multimedia Tools and Applications
1 публикация, 16.67%
|
|
|
Information Systems Engineering and Management
1 публикация, 16.67%
|
|
|
IEEE Transactions on Knowledge and Data Engineering
1 публикация, 16.67%
|
|
|
Discover Computing
1 публикация, 16.67%
|
|
|
1
|
Издатели
|
1
2
3
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
3 публикации, 50%
|
|
|
Springer Nature
3 публикации, 50%
|
|
|
1
2
3
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
6
Всего цитирований:
6
Цитирований c 2024:
6
(100%)
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Suryawanshi S. et al. FakeIDCA: Fake news detection with incremental deep learning based concept drift adaption // Multimedia Tools and Applications. 2023.
ГОСТ со всеми авторами (до 50)
Скопировать
Suryawanshi S., Goswami A., Patil P. FakeIDCA: Fake news detection with incremental deep learning based concept drift adaption // Multimedia Tools and Applications. 2023.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1007/s11042-023-16588-z
UR - https://doi.org/10.1007/s11042-023-16588-z
TI - FakeIDCA: Fake news detection with incremental deep learning based concept drift adaption
T2 - Multimedia Tools and Applications
AU - Suryawanshi, Shubhangi
AU - Goswami, Anurag
AU - Patil, Pramod
PY - 2023
DA - 2023/09/06
PB - Springer Nature
SN - 1380-7501
SN - 1573-7721
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2023_Suryawanshi,
author = {Shubhangi Suryawanshi and Anurag Goswami and Pramod Patil},
title = {FakeIDCA: Fake news detection with incremental deep learning based concept drift adaption},
journal = {Multimedia Tools and Applications},
year = {2023},
publisher = {Springer Nature},
month = {sep},
url = {https://doi.org/10.1007/s11042-023-16588-z},
doi = {10.1007/s11042-023-16588-z}
}