Statistical Inference for Stochastic Processes

Wavelet eigenvalue regression in high dimensions

Publication typeJournal Article
Publication date2022-09-18
scimago Q3
SJR0.363
CiteScore1.3
Impact factor0.7
ISSN13870874, 15729311
Statistics and Probability
Abstract
In this paper, we construct the wavelet eigenvalue regression methodology (Abry and Didier in J Multivar Anal 168:75–104, 2018a; in Bernoulli 24(2):895–928, 2018b) in high dimensions. We assume that possibly non-Gaussian, finite-variance p-variate measurements are made of a low-dimensional r-variate ( $$r \ll p$$ ) fractional stochastic process with non-canonical scaling coordinates and in the presence of additive high-dimensional noise. The measurements are correlated both time-wise and between rows. Building upon the asymptotic and large scale properties of wavelet random matrices in high dimensions, the wavelet eigenvalue regression is shown to be consistent and, under additional assumptions, asymptotically Gaussian in the estimation of the fractal structure of the system. We further construct a consistent estimator of the effective dimension r of the system that significantly increases the robustness of the methodology. The estimation performance over finite samples is studied by means of simulations.
Found 

Top-30

Journals

1
1

Publishers

1
1
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex
Found error?