Statistical Inference for Stochastic Processes, volume 26, issue 3, pages 525-550

The continuous-time hidden Markov model based on discretization. Properties of estimators and applications

Maria J. Gámiz 1
Nikolaos Limnios 2
Mari Carmen Segovia-García 1
2
 
Laboratoire de Mathématiques Appliquées de Compiègne, Université de Technologie de Compiègne, Compiègne, France
Publication typeJournal Article
Publication date2023-06-23
scimago Q3
SJR0.363
CiteScore1.3
Impact factor0.7
ISSN13870874, 15729311
Statistics and Probability
Abstract

In this paper we consider continuous-time hidden Markov processes (CTHMM). The model considered is a two-dimensional stochastic process $$(X_t,Y_t)$$ ( X t , Y t ) , with $$X_t$$ X t an unobserved (hidden) Markov chain defined by its generating matrix and $$Y_t$$ Y t an observed process whose distribution law depends on $$X_t$$ X t and is called the emission function. In general, we allow the process $$Y_t$$ Y t to take values in a subset of the q-dimensional real space, for some q. The coupled process $$(X_t,Y_t)$$ ( X t , Y t ) is a continuous-time Markov chain whose generator is constructed from the generating matrix of X and the emission distribution. We study the theoretical properties of this two-dimensional process using a formulation based on semi-Markov processes. Observations of the CTHMM are obtained by discretization considering two different scenarii. In the first case we consider that observations of the process Y are registered regularly in time, while in the second one, observations arrive at random. Maximum-likelihood estimators of the characteristics of the coupled process are obtained in both scenarii and the asymptotic properties of these estimators are shown, such as consistency and normality. To illustrate the model a real-data example and a simulation study are considered.

Found 

Top-30

Journals

1
1

Publishers

1
2
1
2
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?