AROID: Improving Adversarial Robustness Through Online Instance-Wise Data Augmentation

Тип публикацииJournal Article
Дата публикации2024-08-24
scimago Q1
wos Q1
БС1
SJR3.136
CiteScore25.9
Impact factor9.3
ISSN09205691, 15731405
Краткое описание

Deep neural networks are vulnerable to adversarial examples. Adversarial training (AT) is an effective defense against adversarial examples. However, AT is prone to overfitting which degrades robustness substantially. Recently, data augmentation (DA) was shown to be effective in mitigating robust overfitting if appropriately designed and optimized for AT. This work proposes a new method to automatically learn online, instance-wise, DA policies to improve robust generalization for AT. This is the first automated DA method specific for robustness. A novel policy learning objective, consisting of Vulnerability, Affinity and Diversity, is proposed and shown to be sufficiently effective and efficient to be practical for automatic DA generation during AT. Importantly, our method dramatically reduces the cost of policy search from the 5000 h of AutoAugment and the 412 h of IDBH to 9 h, making automated DA more practical to use for adversarial robustness. This allows our method to efficiently explore a large search space for a more effective DA policy and evolve the policy as training progresses. Empirically, our method is shown to outperform all competitive DA methods across various model architectures and datasets. Our DA policy reinforced vanilla AT to surpass several state-of-the-art AT methods regarding both accuracy and robustness. It can also be combined with those advanced AT methods to further boost robustness. Code and pre-trained models are available at: https://github.com/TreeLLi/AROID.

Найдено 
Найдено 

Топ-30

Журналы

1
Applied Sciences (Switzerland)
1 публикация, 16.67%
IEEE Transactions on Information Forensics and Security
1 публикация, 16.67%
Advanced Engineering Informatics
1 публикация, 16.67%
Lecture Notes in Computer Science
1 публикация, 16.67%
Artificial Intelligence Review
1 публикация, 16.67%
1

Издатели

1
2
Institute of Electrical and Electronics Engineers (IEEE)
2 публикации, 33.33%
Springer Nature
2 публикации, 33.33%
MDPI
1 публикация, 16.67%
Elsevier
1 публикация, 16.67%
1
2
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
6
Поделиться
Цитировать
ГОСТ |
Цитировать
Li L. et al. AROID: Improving Adversarial Robustness Through Online Instance-Wise Data Augmentation // International Journal of Computer Vision. 2024.
ГОСТ со всеми авторами (до 50) Скопировать
Li L., Qiu J., Spratling M. AROID: Improving Adversarial Robustness Through Online Instance-Wise Data Augmentation // International Journal of Computer Vision. 2024.
RIS |
Цитировать
TY - JOUR
DO - 10.1007/s11263-024-02206-4
UR - https://link.springer.com/10.1007/s11263-024-02206-4
TI - AROID: Improving Adversarial Robustness Through Online Instance-Wise Data Augmentation
T2 - International Journal of Computer Vision
AU - Li, Lin
AU - Qiu, Jianing
AU - Spratling, Michael
PY - 2024
DA - 2024/08/24
PB - Springer Nature
SN - 0920-5691
SN - 1573-1405
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2024_Li,
author = {Lin Li and Jianing Qiu and Michael Spratling},
title = {AROID: Improving Adversarial Robustness Through Online Instance-Wise Data Augmentation},
journal = {International Journal of Computer Vision},
year = {2024},
publisher = {Springer Nature},
month = {aug},
url = {https://link.springer.com/10.1007/s11263-024-02206-4},
doi = {10.1007/s11263-024-02206-4}
}