Rejoinder on: Data integration via analysis of subspaces (DIVAS)
Jack Prothero
1
,
Meilei Jiang
2
,
Jan Hannig
3
,
Quoc Tran-Dinh
3
,
Andrew Ackerman
3
,
J. S. Marron
3
2
Meta, Menlo Park, USA
|
3
UNC-Chapel Hill: The University of North Carolina at Chapel Hill, Chapel Hill, USA
|
Publication type: Journal Article
Publication date: 2024-09-01
scimago Q2
wos Q2
SJR: 0.505
CiteScore: 2.0
Impact factor: 1.3
ISSN: 11330686, 18638260
Abstract
Modern data collection in many data paradigms, including bioinformatics, often incorporates multiple traits derived from different data types (i.e., platforms). We call this data multi-block, multi-view, or multi-omics data. The emergent field of data integration develops and applies new methods for studying multi-block data and identifying how different data types relate and differ. One major frontier in contemporary data integration research is methodology that can identify partially shared structure between sub-collections of data types. This work presents a new approach: Data Integration Via Analysis of Subspaces (DIVAS). DIVAS combines new insights in angular subspace perturbation theory with recent developments in matrix signal processing and convex–concave optimization into one algorithm for exploring partially shared structure. Based on principal angles between subspaces, DIVAS provides built-in inference on the results of the analysis and is effective even in high-dimension-low-sample-size (HDLSS) situations.
Found
Nothing found, try to update filter.
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
0
Total citations:
0
Cite this
GOST |
RIS |
BibTex |
MLA
Cite this
GOST
Copy
Prothero J. et al. Rejoinder on: Data integration via analysis of subspaces (DIVAS) // Test. 2024. Vol. 33. No. 3. pp. 693-696.
GOST all authors (up to 50)
Copy
Prothero J., Jiang M., Hannig J., Tran-Dinh Q., Ackerman A., Marron J. S. Rejoinder on: Data integration via analysis of subspaces (DIVAS) // Test. 2024. Vol. 33. No. 3. pp. 693-696.
Cite this
RIS
Copy
TY - JOUR
DO - 10.1007/s11749-024-00950-w
UR - https://link.springer.com/10.1007/s11749-024-00950-w
TI - Rejoinder on: Data integration via analysis of subspaces (DIVAS)
T2 - Test
AU - Prothero, Jack
AU - Jiang, Meilei
AU - Hannig, Jan
AU - Tran-Dinh, Quoc
AU - Ackerman, Andrew
AU - Marron, J. S.
PY - 2024
DA - 2024/09/01
PB - Springer Nature
SP - 693-696
IS - 3
VL - 33
SN - 1133-0686
SN - 1863-8260
ER -
Cite this
BibTex (up to 50 authors)
Copy
@article{2024_Prothero,
author = {Jack Prothero and Meilei Jiang and Jan Hannig and Quoc Tran-Dinh and Andrew Ackerman and J. S. Marron},
title = {Rejoinder on: Data integration via analysis of subspaces (DIVAS)},
journal = {Test},
year = {2024},
volume = {33},
publisher = {Springer Nature},
month = {sep},
url = {https://link.springer.com/10.1007/s11749-024-00950-w},
number = {3},
pages = {693--696},
doi = {10.1007/s11749-024-00950-w}
}
Cite this
MLA
Copy
Prothero, Jack, et al. “Rejoinder on: Data integration via analysis of subspaces (DIVAS).” Test, vol. 33, no. 3, Sep. 2024, pp. 693-696. https://link.springer.com/10.1007/s11749-024-00950-w.