Predicting Water Quality with Artificial Intelligence: A Review of Methods and Applications
Dani Irwan
1
,
Maisarah Ali
1
,
Ali Najah Ahmed
2
,
Gan Jacky
2
,
Aiman Nurhakim
2
,
Mervyn Chah Ping Han
2
,
Nouar Aldahoul
3
,
Ahmed El-Shafie
4
Тип публикации: Journal Article
Дата публикации: 2023-06-13
scimago Q1
wos Q1
БС1
SJR: 2.038
CiteScore: 27.4
Impact factor: 12.1
ISSN: 11343060, 18861784
Computer Science Applications
Applied Mathematics
Краткое описание
The water is the main pivotal sources of irrigation in agricultural activities and affects human daily activities such as drinking. The water quality has a significant impact on various aspects and thus this review aims to addresses existing problems related to water quality prediction methods that have been found in the literature. We explore numerous quality parameters incorporated in the modelling process to measure the quality of water. Furthermore, we review the commonly adopted artificial intelligence-based models which have been utilized to forecast the water quality. 83 studies published from 2009 to 2023 were selected and reviewed based on their success in modelling and forecasting the water quality in multiple regions. We compared these articles in terms of parameters, modelling algorithms, time scale scenarios, and performance measurement indicators. This paper is beneficial to researchers that have interests to conduct future studies related to water quality forecasting. Additionally, we discuss a variety of modelling methods such as deep learning (DL) that have proven to boost the efficiency compared to traditional machine learning (ML) models. As a result, the hybrid-DL models were found to outperform other models such as standalone ML, standalone DL, and hybrid-ML. This study shows a significant limitation of the data-hungry DL models which require a big data size for modelling. Hence, at the end of this review study, we discuss the potential of some methods such as generative adversarial networks (GANs) and attention-based transformer to open the door for water quality prediction improvement. GAN has shown promising performance in other domains for synthetic data generation. The potential usage of GAN for water quality domain can overcome the limitations of lack of data and enhance the performance of the predictive models reviewed in this study. Similarly, transformer was found to be state of the art model for time series prediction and thus it can be good candidate to predict water quality.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
3
4
5
|
|
|
Journal of Hydrology
5 публикаций, 9.09%
|
|
|
Sustainability
3 публикации, 5.45%
|
|
|
PLoS ONE
3 публикации, 5.45%
|
|
|
Water (Switzerland)
3 публикации, 5.45%
|
|
|
Archives of Computational Methods in Engineering
2 публикации, 3.64%
|
|
|
Environmental Science and Pollution Research
2 публикации, 3.64%
|
|
|
Journal of Water Process Engineering
2 публикации, 3.64%
|
|
|
Journal of Environmental Management
2 публикации, 3.64%
|
|
|
Earth Science Informatics
1 публикация, 1.82%
|
|
|
Smart Cities
1 публикация, 1.82%
|
|
|
Journal of Hydroinformatics
1 публикация, 1.82%
|
|
|
Environmental Pollution
1 публикация, 1.82%
|
|
|
Agricultural Water Management
1 публикация, 1.82%
|
|
|
Science of the Total Environment
1 публикация, 1.82%
|
|
|
Stochastic Environmental Research and Risk Assessment
1 публикация, 1.82%
|
|
|
Measurement Science and Technology
1 публикация, 1.82%
|
|
|
Information Sciences
1 публикация, 1.82%
|
|
|
Proceedings of International Conference on Information and Communication Technology for Development
1 публикация, 1.82%
|
|
|
Sensors
1 публикация, 1.82%
|
|
|
Frontiers in Artificial Intelligence
1 публикация, 1.82%
|
|
|
Computers and Electronics in Agriculture
1 публикация, 1.82%
|
|
|
Environmental Science: Water Research and Technology
1 публикация, 1.82%
|
|
|
Hydrology
1 публикация, 1.82%
|
|
|
Electronics (Switzerland)
1 публикация, 1.82%
|
|
|
Marine Pollution Bulletin
1 публикация, 1.82%
|
|
|
Aerosol Science and Engineering
1 публикация, 1.82%
|
|
|
Process Safety and Environmental Protection
1 публикация, 1.82%
|
|
|
Applied Water Science
1 публикация, 1.82%
|
|
|
Atmospheric Environment: X
1 публикация, 1.82%
|
|
|
1
2
3
4
5
|
Издатели
|
2
4
6
8
10
12
14
16
18
20
|
|
|
Elsevier
19 публикаций, 34.55%
|
|
|
Springer Nature
11 публикаций, 20%
|
|
|
MDPI
10 публикаций, 18.18%
|
|
|
Public Library of Science (PLoS)
3 публикации, 5.45%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
3 публикации, 5.45%
|
|
|
Royal Society of Chemistry (RSC)
2 публикации, 3.64%
|
|
|
Taylor & Francis
2 публикации, 3.64%
|
|
|
IWA Publishing
1 публикация, 1.82%
|
|
|
Society of Petroleum Engineers
1 публикация, 1.82%
|
|
|
IOP Publishing
1 публикация, 1.82%
|
|
|
Frontiers Media S.A.
1 публикация, 1.82%
|
|
|
Wiley
1 публикация, 1.82%
|
|
|
2
4
6
8
10
12
14
16
18
20
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
55
Всего цитирований:
55
Цитирований c 2024:
48
(87.28%)
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Irwan D. et al. Predicting Water Quality with Artificial Intelligence: A Review of Methods and Applications // Archives of Computational Methods in Engineering. 2023.
ГОСТ со всеми авторами (до 50)
Скопировать
Irwan D., Ali M., Ahmed A. N., Jacky G., Nurhakim A., Ping Han M. C., Aldahoul N., El-Shafie A. Predicting Water Quality with Artificial Intelligence: A Review of Methods and Applications // Archives of Computational Methods in Engineering. 2023.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1007/s11831-023-09947-4
UR - https://doi.org/10.1007/s11831-023-09947-4
TI - Predicting Water Quality with Artificial Intelligence: A Review of Methods and Applications
T2 - Archives of Computational Methods in Engineering
AU - Irwan, Dani
AU - Ali, Maisarah
AU - Ahmed, Ali Najah
AU - Jacky, Gan
AU - Nurhakim, Aiman
AU - Ping Han, Mervyn Chah
AU - Aldahoul, Nouar
AU - El-Shafie, Ahmed
PY - 2023
DA - 2023/06/13
PB - Springer Nature
SN - 1134-3060
SN - 1886-1784
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2023_Irwan,
author = {Dani Irwan and Maisarah Ali and Ali Najah Ahmed and Gan Jacky and Aiman Nurhakim and Mervyn Chah Ping Han and Nouar Aldahoul and Ahmed El-Shafie},
title = {Predicting Water Quality with Artificial Intelligence: A Review of Methods and Applications},
journal = {Archives of Computational Methods in Engineering},
year = {2023},
publisher = {Springer Nature},
month = {jun},
url = {https://doi.org/10.1007/s11831-023-09947-4},
doi = {10.1007/s11831-023-09947-4}
}