volume 35 issue 2 publication number 45

Multilinear Dunkl Multiplier Operators

Publication typeJournal Article
Publication date2024-12-21
scimago Q1
wos Q1
SJR1.248
CiteScore2.3
Impact factor1.5
ISSN10506926, 1559002X
Abstract
In this paper, we explore the boundedness of multilinear Dunkl multipliers in three different cases. Firstly, we prove that under summation Hörmander conditions, multilinear Dunkl multipliers have $$L^p(dw)$$ boundedness in the space $$L^{p_1}_{rad,>0}(dw)\times L^{p_2}_{rad,>0}(dw)\times \cdots \times L^{p_N}_{rad,>0}(dw)$$ , where $$1\le p_i, p\le \infty $$ , and $$\frac{1}{p_1}+\frac{1}{p_2}+\cdots +\frac{1}{p_N}=\frac{1}{p}$$ . Secondly, by proving the norm of a specific Carleson measure, we demonstrate that under restricted general Hörmander conditions, the $$L^1(dw)$$ boundedness of multilinear Dunkl multipliers can be achieved in the space $$L^2_{rad,>0}(dw)\times L^2_{rad,>0}(dw)\times \cdots \times L^{\infty }_{rad, >0}$$ . Finally, by proving the Littlewood-Paley inequality under Dunkl transforms, we further establish that under general Hörmander conditions, the $$L^p(dw)$$ boundedness of multilinear Dunkl multipliers can be attained in the space $$L^{p_1}_{rad}(dw)\times L^{p_2}_{rad}(dw)\times \cdots \times L^{p_N}_{rad}(dw)$$ , where $$2
Found 
Found 

Top-30

Journals

1
Bulletin of the Malaysian Mathematical Sciences Society
1 publication, 100%
1

Publishers

1
Springer Nature
1 publication, 100%
1
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
1
Share
Cite this
GOST |
Cite this
GOST Copy
Peng Zi et al. Multilinear Dunkl Multiplier Operators // Journal of Geometric Analysis. 2024. Vol. 35. No. 2. 45
GOST all authors (up to 50) Copy
Peng Zi, Zhao J. Multilinear Dunkl Multiplier Operators // Journal of Geometric Analysis. 2024. Vol. 35. No. 2. 45
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1007/s12220-024-01860-x
UR - https://link.springer.com/10.1007/s12220-024-01860-x
TI - Multilinear Dunkl Multiplier Operators
T2 - Journal of Geometric Analysis
AU - Peng Zi
AU - Zhao, Jiman
PY - 2024
DA - 2024/12/21
PB - Springer Nature
IS - 2
VL - 35
SN - 1050-6926
SN - 1559-002X
ER -
BibTex
Cite this
BibTex (up to 50 authors) Copy
@article{2024_Peng Zi,
author = {Peng Zi and Jiman Zhao},
title = {Multilinear Dunkl Multiplier Operators},
journal = {Journal of Geometric Analysis},
year = {2024},
volume = {35},
publisher = {Springer Nature},
month = {dec},
url = {https://link.springer.com/10.1007/s12220-024-01860-x},
number = {2},
pages = {45},
doi = {10.1007/s12220-024-01860-x}
}