том 30 издание 1 номер публикации 2

An elementary proof of a conjecture of Saikia on congruences for t-colored overpartitions

Тип публикацииJournal Article
Дата публикации2023-12-21
scimago Q2
wos Q2
БС3
SJR0.414
CiteScore1.4
Impact factor0.8
ISSN00378615, 1405213X, 22964495
General Mathematics
Краткое описание
The starting point for this work is the family of functions $$\overline{p}_{-t}(n)$$ which counts the number of t-colored overpartitions of n. In recent years, several infinite families of congruences satisfied by $$\overline{p}_{-t}(n)$$ for specific values of $$t\ge 1$$ have been proven. In particular, in his 2023 work, Saikia proved a number of congruence properties modulo powers of 2 for $$\overline{p}_{-t}(n)$$ for $$t=5,7,11,13$$ . He also included the following conjecture in that paper: Conjecture: For all $$n\ge 0$$ and primes t, we have $$\begin{aligned} \overline{p}_{-t}(8n+1)\equiv & {} 0 \pmod {2}, \\ \overline{p}_{-t}(8n+2)\equiv & {} 0 \pmod {4}, \\ \overline{p}_{-t}(8n+3)\equiv & {} 0 \pmod {8}, \\ \overline{p}_{-t}(8n+4)\equiv & {} 0 \pmod {2}, \\ \overline{p}_{-t}(8n+5)\equiv & {} 0 \pmod {8}, \\ \overline{p}_{-t}(8n+6)\equiv & {} 0 \pmod {8}, \\ \overline{p}_{-t}(8n+7)\equiv & {} 0 \pmod {32}. \end{aligned}$$ Using a truly elementary approach, relying on classical generating function manipulations and dissections, as well as proof by induction, we show that Saikia’s conjecture holds for all odd integers t (not necessarily prime).
Найдено 
Найдено 

Топ-30

Журналы

1
Bulletin of the Australian Mathematical Society
1 публикация, 50%
Afrika Matematika
1 публикация, 50%
1

Издатели

1
Cambridge University Press
1 публикация, 50%
Springer Nature
1 публикация, 50%
1
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
2
Поделиться
Цитировать
ГОСТ |
Цитировать
Sellers J. A. An elementary proof of a conjecture of Saikia on congruences for t-colored overpartitions // Boletin de la Sociedad Matematica Mexicana. 2023. Vol. 30. No. 1. 2
ГОСТ со всеми авторами (до 50) Скопировать
Sellers J. A. An elementary proof of a conjecture of Saikia on congruences for t-colored overpartitions // Boletin de la Sociedad Matematica Mexicana. 2023. Vol. 30. No. 1. 2
RIS |
Цитировать
TY - JOUR
DO - 10.1007/s40590-023-00574-4
UR - https://doi.org/10.1007/s40590-023-00574-4
TI - An elementary proof of a conjecture of Saikia on congruences for t-colored overpartitions
T2 - Boletin de la Sociedad Matematica Mexicana
AU - Sellers, James A
PY - 2023
DA - 2023/12/21
PB - Springer Nature
IS - 1
VL - 30
SN - 0037-8615
SN - 1405-213X
SN - 2296-4495
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2023_Sellers,
author = {James A Sellers},
title = {An elementary proof of a conjecture of Saikia on congruences for t-colored overpartitions},
journal = {Boletin de la Sociedad Matematica Mexicana},
year = {2023},
volume = {30},
publisher = {Springer Nature},
month = {dec},
url = {https://doi.org/10.1007/s40590-023-00574-4},
number = {1},
pages = {2},
doi = {10.1007/s40590-023-00574-4}
}
Профили