An elementary proof of a conjecture of Saikia on congruences for t-colored overpartitions
Тип публикации: Journal Article
Дата публикации: 2023-12-21
scimago Q2
wos Q2
БС3
SJR: 0.414
CiteScore: 1.4
Impact factor: 0.8
ISSN: 00378615, 1405213X, 22964495
General Mathematics
Краткое описание
The starting point for this work is the family of functions $$\overline{p}_{-t}(n)$$ which counts the number of t-colored overpartitions of n. In recent years, several infinite families of congruences satisfied by $$\overline{p}_{-t}(n)$$ for specific values of $$t\ge 1$$ have been proven. In particular, in his 2023 work, Saikia proved a number of congruence properties modulo powers of 2 for $$\overline{p}_{-t}(n)$$ for $$t=5,7,11,13$$ . He also included the following conjecture in that paper: Conjecture: For all $$n\ge 0$$ and primes t, we have $$\begin{aligned} \overline{p}_{-t}(8n+1)\equiv & {} 0 \pmod {2}, \\ \overline{p}_{-t}(8n+2)\equiv & {} 0 \pmod {4}, \\ \overline{p}_{-t}(8n+3)\equiv & {} 0 \pmod {8}, \\ \overline{p}_{-t}(8n+4)\equiv & {} 0 \pmod {2}, \\ \overline{p}_{-t}(8n+5)\equiv & {} 0 \pmod {8}, \\ \overline{p}_{-t}(8n+6)\equiv & {} 0 \pmod {8}, \\ \overline{p}_{-t}(8n+7)\equiv & {} 0 \pmod {32}. \end{aligned}$$ Using a truly elementary approach, relying on classical generating function manipulations and dissections, as well as proof by induction, we show that Saikia’s conjecture holds for all odd integers t (not necessarily prime).
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
|
|
|
Bulletin of the Australian Mathematical Society
1 публикация, 50%
|
|
|
Afrika Matematika
1 публикация, 50%
|
|
|
1
|
Издатели
|
1
|
|
|
Cambridge University Press
1 публикация, 50%
|
|
|
Springer Nature
1 публикация, 50%
|
|
|
1
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
2
Всего цитирований:
2
Цитирований c 2024:
2
(100%)
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Sellers J. A. An elementary proof of a conjecture of Saikia on congruences for t-colored overpartitions // Boletin de la Sociedad Matematica Mexicana. 2023. Vol. 30. No. 1. 2
ГОСТ со всеми авторами (до 50)
Скопировать
Sellers J. A. An elementary proof of a conjecture of Saikia on congruences for t-colored overpartitions // Boletin de la Sociedad Matematica Mexicana. 2023. Vol. 30. No. 1. 2
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1007/s40590-023-00574-4
UR - https://doi.org/10.1007/s40590-023-00574-4
TI - An elementary proof of a conjecture of Saikia on congruences for t-colored overpartitions
T2 - Boletin de la Sociedad Matematica Mexicana
AU - Sellers, James A
PY - 2023
DA - 2023/12/21
PB - Springer Nature
IS - 1
VL - 30
SN - 0037-8615
SN - 1405-213X
SN - 2296-4495
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2023_Sellers,
author = {James A Sellers},
title = {An elementary proof of a conjecture of Saikia on congruences for t-colored overpartitions},
journal = {Boletin de la Sociedad Matematica Mexicana},
year = {2023},
volume = {30},
publisher = {Springer Nature},
month = {dec},
url = {https://doi.org/10.1007/s40590-023-00574-4},
number = {1},
pages = {2},
doi = {10.1007/s40590-023-00574-4}
}
Профили