volume 30 issue 3 publication number 105

On the Diophantine equations of the form $$\lambda _1U_{n_1} + \lambda _2U_{n_2} +\cdots + \lambda _kU_{n_k} = wp_1^{z_1}p_2^{z_2} \cdots p_s^{z_s}$$

Publication typeJournal Article
Publication date2024-10-26
scimago Q2
wos Q2
SJR0.414
CiteScore1.4
Impact factor0.8
ISSN00378615, 1405213X, 22964495
Abstract

In this paper, we consider the Diophantine equation $$\lambda _1U_{n_1}+\cdots +\lambda _kU_{n_k}=wp_1^{z_1} \ldots p_s^{z_s},$$ λ 1 U n 1 + + λ k U n k = w p 1 z 1 p s z s , where $$\{U_n\}_{n\ge 0}$$ { U n } n 0 is a fixed non-degenerate linear recurrence sequence of order greater than or equal to 2; w is a fixed non-zero integer; $$p_1,\dots ,p_s$$ p 1 , , p s are fixed, distinct prime numbers; $$\lambda _1,\dots ,\lambda _k$$ λ 1 , , λ k are strictly positive integers; and $$n_1,\dots ,n_k,z_1,\dots ,z_s$$ n 1 , , n k , z 1 , , z s are non-negative integer unknowns. We prove the existence of an effectively computable upper-bound on the solutions $$(n_1,\dots ,n_k,z_1,\dots ,z_s)$$ ( n 1 , , n k , z 1 , , z s ) . In our proof, we use lower bounds for linear forms in logarithms, extending the work of Pink and Ziegler (Monatshefte Math 185(1):103–131, 2018), Mazumdar and Rout (Monatshefte Math 189(4):695–714, 2019), Meher and Rout (Lith Math J 57(4):506–520, 2017), and Ziegler (Acta Arith 190:139–169, 2019).

Found 

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
0
Share
Cite this
GOST |
Cite this
GOST Copy
Goedhart E. G. et al. On the Diophantine equations of the form $$\lambda _1U_{n_1} + \lambda _2U_{n_2} +\cdots + \lambda _kU_{n_k} = wp_1^{z_1}p_2^{z_2} \cdots p_s^{z_s}$$ // Boletin de la Sociedad Matematica Mexicana. 2024. Vol. 30. No. 3. 105
GOST all authors (up to 50) Copy
Goedhart E. G., Ha B., McBeath L., Velasco L. On the Diophantine equations of the form $$\lambda _1U_{n_1} + \lambda _2U_{n_2} +\cdots + \lambda _kU_{n_k} = wp_1^{z_1}p_2^{z_2} \cdots p_s^{z_s}$$ // Boletin de la Sociedad Matematica Mexicana. 2024. Vol. 30. No. 3. 105
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1007/s40590-024-00669-6
UR - https://link.springer.com/10.1007/s40590-024-00669-6
TI - On the Diophantine equations of the form $$\lambda _1U_{n_1} + \lambda _2U_{n_2} +\cdots + \lambda _kU_{n_k} = wp_1^{z_1}p_2^{z_2} \cdots p_s^{z_s}$$
T2 - Boletin de la Sociedad Matematica Mexicana
AU - Goedhart, Eva G
AU - Ha, Brian
AU - McBeath, Lily
AU - Velasco, Luisa
PY - 2024
DA - 2024/10/26
PB - Springer Nature
IS - 3
VL - 30
SN - 0037-8615
SN - 1405-213X
SN - 2296-4495
ER -
BibTex
Cite this
BibTex (up to 50 authors) Copy
@article{2024_Goedhart,
author = {Eva G Goedhart and Brian Ha and Lily McBeath and Luisa Velasco},
title = {On the Diophantine equations of the form $$\lambda _1U_{n_1} + \lambda _2U_{n_2} +\cdots + \lambda _kU_{n_k} = wp_1^{z_1}p_2^{z_2} \cdots p_s^{z_s}$$},
journal = {Boletin de la Sociedad Matematica Mexicana},
year = {2024},
volume = {30},
publisher = {Springer Nature},
month = {oct},
url = {https://link.springer.com/10.1007/s40590-024-00669-6},
number = {3},
pages = {105},
doi = {10.1007/s40590-024-00669-6}
}