Monogenic cyclic cubic trinomials
Publication type: Journal Article
Publication date: 2025-01-07
scimago Q2
wos Q2
SJR: 0.414
CiteScore: 1.4
Impact factor: 0.8
ISSN: 00378615, 1405213X, 22964495
Abstract
A series of recent articles has shown that there exist only three monogenic cyclic quartic trinomials in $$\mathbb {Z}[x]$$ , and they are all of the form $$x^4+bx^2+d$$ . In this article, we conduct an analogous investigation for cubic trinomials in $$\mathbb {Z}[x]$$ . Two irreducible cyclic cubic trinomials are said to be equivalent if their splitting fields are equal. We show that there exist two infinite families of non-equivalent monogenic cyclic cubic trinomials of the form $$x^3+Ax+B$$ . We also show that there exist exactly four monogenic cyclic cubic trinomials of the form $$x^3+Ax^2+B$$ , all of which are equivalent to $$x^3-3x+1$$ .
Found
Nothing found, try to update filter.
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
0
Total citations:
0
Cite this
GOST |
RIS |
BibTex
Cite this
RIS
Copy
TY - JOUR
DO - 10.1007/s40590-024-00708-2
UR - https://link.springer.com/10.1007/s40590-024-00708-2
TI - Monogenic cyclic cubic trinomials
T2 - Boletin de la Sociedad Matematica Mexicana
AU - Jones, Lenny
PY - 2025
DA - 2025/01/07
PB - Springer Nature
IS - 1
VL - 31
SN - 0037-8615
SN - 1405-213X
SN - 2296-4495
ER -
Cite this
BibTex (up to 50 authors)
Copy
@article{2025_Jones,
author = {Lenny Jones},
title = {Monogenic cyclic cubic trinomials},
journal = {Boletin de la Sociedad Matematica Mexicana},
year = {2025},
volume = {31},
publisher = {Springer Nature},
month = {jan},
url = {https://link.springer.com/10.1007/s40590-024-00708-2},
number = {1},
pages = {28},
doi = {10.1007/s40590-024-00708-2}
}