Open Access
The performance of wearable sensors in the detection of SARS-CoV-2 infection: a systematic review
Marianna Mitratza
1
,
Brianna Goodale
2
,
Aizhan Shagadatova
1
,
Vladimir Kovacevic
2
,
Janneke H. H. M. van de Wijgert
3
,
Timo B. Brakenhoff
4
,
Richard L. Dobson
5
,
Billy Franks
4
,
Duco Veen
1, 4, 6
,
A. Folarin
5, 7, 8
,
Pieter Stolk
3
,
D E Grobbee
1, 4
,
Maureen Cronin
2
,
Downward G
1
1
2
Ava AG, Zurich, Switzerland
|
4
Julius Clinical Research BV, Zeist, Netherlands
|
7
Department of Biostatistics and Health Informatics, South London and Maudsley NHS Foundation Trust, London, UK
|
Тип публикации: Journal Article
Дата публикации: 2022-05-01
scimago Q1
wos Q1
БС1
SJR: 6.838
CiteScore: 38.4
Impact factor: 24.1
ISSN: 25897500
PubMed ID:
35461692
Medicine (miscellaneous)
Health Informatics
Health Information Management
Decision Sciences (miscellaneous)
Краткое описание
Summary
Containing the COVID-19 pandemic requires rapidly identifying infected individuals. Subtle changes in physiological parameters (such as heart rate, respiratory rate, and skin temperature), discernible by wearable devices, could act as early digital biomarkers of infections. Our primary objective was to assess the performance of statistical and algorithmic models using data from wearable devices to detect deviations compatible with a SARS-CoV-2 infection. We searched MEDLINE, Embase, Web of Science, the Cochrane Central Register of Controlled Trials (known as CENTRAL), International Clinical Trials Registry Platform, and ClinicalTrials.gov on July 27, 2021 for publications, preprints, and study protocols describing the use of wearable devices to identify a SARS-CoV-2 infection. Of 3196 records identified and screened, 12 articles and 12 study protocols were analysed. Most included articles had a moderate risk of bias, as per the National Institute of Health Quality Assessment Tool for Observational and Cross-Sectional Studies. The accuracy of algorithmic models to detect SARS-CoV-2 infection varied greatly (area under the curve 0·52–0·92). An algorithm's ability to detect presymptomatic infection varied greatly (from 20% to 88% of cases), from 14 days to 1 day before symptom onset. Increased heart rate was most frequently associated with SARS-CoV-2 infection, along with increased skin temperature and respiratory rate. All 12 protocols described prospective studies that had yet to be completed or to publish their results, including two randomised controlled trials. The evidence surrounding wearable devices in the early detection of SARS-CoV-2 infection is still in an early stage, with a limited overall number of studies identified. However, these studies show promise for the early detection of SARS-CoV-2 infection. Large prospective, and preferably controlled, studies recruiting and retaining larger and more diverse populations are needed to provide further evidence.Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
3
4
5
|
|
|
Journal of Medical Internet Research
5 публикаций, 9.26%
|
|
|
npj Digital Medicine
3 публикации, 5.56%
|
|
|
The Lancet Digital Health
3 публикации, 5.56%
|
|
|
PLoS ONE
2 публикации, 3.7%
|
|
|
BMJ Open
2 публикации, 3.7%
|
|
|
Mayo Clinic Proceedings Digital Health
2 публикации, 3.7%
|
|
|
Scientific Reports
2 публикации, 3.7%
|
|
|
PNAS Nexus
2 публикации, 3.7%
|
|
|
Journal of the Chinese Medical Association
1 публикация, 1.85%
|
|
|
Diagnostics
1 публикация, 1.85%
|
|
|
Frontiers in Cellular and Infection Microbiology
1 публикация, 1.85%
|
|
|
Advanced Sensor Research
1 публикация, 1.85%
|
|
|
Engineering Applications of Artificial Intelligence
1 публикация, 1.85%
|
|
|
American Journal of Preventive Cardiology
1 публикация, 1.85%
|
|
|
TrAC - Trends in Analytical Chemistry
1 публикация, 1.85%
|
|
|
Sensors and Actuators, B: Chemical
1 публикация, 1.85%
|
|
|
Journal of Science: Advanced Materials and Devices
1 публикация, 1.85%
|
|
|
Chemical Society Reviews
1 публикация, 1.85%
|
|
|
Displays
1 публикация, 1.85%
|
|
|
Research square
1 публикация, 1.85%
|
|
|
Clinical Pharmacology and Therapeutics
1 публикация, 1.85%
|
|
|
Frontiers in Artificial Intelligence
1 публикация, 1.85%
|
|
|
JMIR mHealth and uHealth
1 публикация, 1.85%
|
|
|
Advanced healthcare materials
1 публикация, 1.85%
|
|
|
Sensors
1 публикация, 1.85%
|
|
|
The Lancet Regional Health - Europe
1 публикация, 1.85%
|
|
|
JMIR Research Protocols
1 публикация, 1.85%
|
|
|
Chemical Reviews
1 публикация, 1.85%
|
|
|
Circulation. Genomic and precision medicine
1 публикация, 1.85%
|
|
|
1
2
3
4
5
|
Издатели
|
2
4
6
8
10
12
14
|
|
|
Elsevier
14 публикаций, 25.93%
|
|
|
JMIR Publications
10 публикаций, 18.52%
|
|
|
Springer Nature
6 публикаций, 11.11%
|
|
|
MDPI
3 публикации, 5.56%
|
|
|
Wiley
3 публикации, 5.56%
|
|
|
Ovid Technologies (Wolters Kluwer Health)
2 публикации, 3.7%
|
|
|
Frontiers Media S.A.
2 публикации, 3.7%
|
|
|
Public Library of Science (PLoS)
2 публикации, 3.7%
|
|
|
BMJ
2 публикации, 3.7%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
2 публикации, 3.7%
|
|
|
Oxford University Press
2 публикации, 3.7%
|
|
|
Cold Spring Harbor Laboratory
1 публикация, 1.85%
|
|
|
Royal Society of Chemistry (RSC)
1 публикация, 1.85%
|
|
|
American Chemical Society (ACS)
1 публикация, 1.85%
|
|
|
IGI Global
1 публикация, 1.85%
|
|
|
2
4
6
8
10
12
14
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
54
Всего цитирований:
54
Цитирований c 2024:
28
(51.85%)
Цитировать
ГОСТ |
RIS |
BibTex |
MLA
Цитировать
ГОСТ
Скопировать
Mitratza M. et al. The performance of wearable sensors in the detection of SARS-CoV-2 infection: a systematic review // The Lancet Digital Health. 2022. Vol. 4. No. 5. p. e370-e383.
ГОСТ со всеми авторами (до 50)
Скопировать
Mitratza M., Goodale B., Shagadatova A., Kovacevic V., van de Wijgert J. H. H. M., Brakenhoff T. B., Dobson R. L., Franks B., Veen D., Folarin A., Stolk P., Grobbee D. E., Cronin M., G D. The performance of wearable sensors in the detection of SARS-CoV-2 infection: a systematic review // The Lancet Digital Health. 2022. Vol. 4. No. 5. p. e370-e383.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1016/S2589-7500(22)00019-X
UR - https://doi.org/10.1016/S2589-7500(22)00019-X
TI - The performance of wearable sensors in the detection of SARS-CoV-2 infection: a systematic review
T2 - The Lancet Digital Health
AU - Mitratza, Marianna
AU - Goodale, Brianna
AU - Shagadatova, Aizhan
AU - Kovacevic, Vladimir
AU - van de Wijgert, Janneke H. H. M.
AU - Brakenhoff, Timo B.
AU - Dobson, Richard L.
AU - Franks, Billy
AU - Veen, Duco
AU - Folarin, A.
AU - Stolk, Pieter
AU - Grobbee, D E
AU - Cronin, Maureen
AU - G, Downward
PY - 2022
DA - 2022/05/01
PB - Elsevier
SP - e370-e383
IS - 5
VL - 4
PMID - 35461692
SN - 2589-7500
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2022_Mitratza,
author = {Marianna Mitratza and Brianna Goodale and Aizhan Shagadatova and Vladimir Kovacevic and Janneke H. H. M. van de Wijgert and Timo B. Brakenhoff and Richard L. Dobson and Billy Franks and Duco Veen and A. Folarin and Pieter Stolk and D E Grobbee and Maureen Cronin and Downward G},
title = {The performance of wearable sensors in the detection of SARS-CoV-2 infection: a systematic review},
journal = {The Lancet Digital Health},
year = {2022},
volume = {4},
publisher = {Elsevier},
month = {may},
url = {https://doi.org/10.1016/S2589-7500(22)00019-X},
number = {5},
pages = {e370--e383},
doi = {10.1016/S2589-7500(22)00019-X}
}
Цитировать
MLA
Скопировать
Mitratza, Marianna, et al. “The performance of wearable sensors in the detection of SARS-CoV-2 infection: a systematic review.” The Lancet Digital Health, vol. 4, no. 5, May. 2022, pp. e370-e383. https://doi.org/10.1016/S2589-7500(22)00019-X.