Analytica Chimica Acta, volume 1143, pages 298-305

Machine learning based on holographic scattering spectrum for mixed pollutants analysis

Publication typeJournal Article
Publication date2021-01-01
scimago Q1
wos Q1
SJR0.998
CiteScore10.4
Impact factor5.7
ISSN00032670, 18734324
Biochemistry
Spectroscopy
Analytical Chemistry
Environmental Chemistry
Abstract
Determination of complex pollutants often involves many high-cost and laborious operations. Today's pop machine-learning (ML) technology has exhibited their amazing successes in image recognition, drug designing, disease detection, natural language understanding, etc. ML-driven samples testing will inevitably promote the development of related subjects and fields, but the biggest challenge ahead for this process is how to provide some intelligible and sufficient data for various algorithms. In this work, we present a full strategy for rapid detecting mixed pollutants through the synergistic application of holographic spectrum and convolutional neural network (CNN). The results have shown that a well-trained CNN model could realize quantitative analysis of the mixed pollutants by extracting spectral information of matters, suggesting the strategy's value in facilitating the study of complex chemical systems.
Found 
Found 

Top-30

Journals

1
2
1
2

Publishers

1
2
3
4
1
2
3
4
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex
Found error?