Open Access
Advanced AI techniques for landslide susceptibility mapping and spatial prediction: A case study in Medellín, Colombia
Ingry N Gómez
1
,
Camilo Restrepo Estrada
2
,
Alejandro Builes-Jaramillo
3
,
João Paulo Albuquerque Cavalcanti De Albuquerque
4
1
Grupo de Investigación e Innovación Ambiental-GIIAM, Faculty of Engineering, Institución Universitaria Pascual Bravo, Calle 73 No. 73A 226, Medellín 050034, Colombia
|
3
Grupo de Investigación Ambiente Hábitat y Sostenibilidad, Facultad de Arquitectura e Ingeniería, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 No. 65 - 46, Medellín, Colombia
|
Тип публикации: Journal Article
Дата публикации: 2025-02-07
scimago Q1
wos Q2
БС2
SJR: 0.800
CiteScore: 4.6
Impact factor: 3.2
ISSN: 25901974
Краткое описание
Landslides, a global phenomenon, significantly impact economies and societies, especially in densely populated areas. Effective mitigation requires awareness of landslide risks, yet temporal links between occurrences are often neglected, challenging model performance due to non-stationary triggering and predisposing factors. This study presents a novel landslide susceptibility model that incorporates spatial and temporal dependencies, including landslide recurrence. We applied AI models — Naive Bayes, Linear Discriminant Analysis, Quadratic Discriminant Analysis, Decision Trees, Random Forest, and Support Vector Machine (SVM) — to a case study in Medellín, a mountainous city in northwest Colombia. Using heuristic methods, we evaluated geological and geomorphological characteristics to identify high-risk areas. Integrating temporal data from four consecutive periods allowed us to enhance estimation robustness by incorporating random effects. Our findings identify slope, stream distance, geology, geomorphology, and mean annual precipitation as key factors influencing landslide susceptibility in Medellín. The SVM model demonstrated superior performance with an accuracy of 85%, closely aligning with previous studies. This research underscores the importance of temporal dynamics in landslide susceptibility assessments, improving prediction accuracy and supporting more effective risk management.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
|
|
|
Results in Engineering
1 публикация, 100%
|
|
|
1
|
Издатели
|
1
|
|
|
Elsevier
1 публикация, 100%
|
|
|
1
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
1
Всего цитирований:
1
Цитирований c 2024:
1
(100%)
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Gómez I. N. et al. Advanced AI techniques for landslide susceptibility mapping and spatial prediction: A case study in Medellín, Colombia // Applied Computing and Geosciences. 2025. Vol. 25. p. 100226.
ГОСТ со всеми авторами (до 50)
Скопировать
Gómez I. N., Restrepo Estrada C., Builes-Jaramillo A., De Albuquerque J. P. A. C. Advanced AI techniques for landslide susceptibility mapping and spatial prediction: A case study in Medellín, Colombia // Applied Computing and Geosciences. 2025. Vol. 25. p. 100226.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1016/j.acags.2025.100226
UR - https://linkinghub.elsevier.com/retrieve/pii/S2590197425000084
TI - Advanced AI techniques for landslide susceptibility mapping and spatial prediction: A case study in Medellín, Colombia
T2 - Applied Computing and Geosciences
AU - Gómez, Ingry N
AU - Restrepo Estrada, Camilo
AU - Builes-Jaramillo, Alejandro
AU - De Albuquerque, João Paulo Albuquerque Cavalcanti
PY - 2025
DA - 2025/02/07
PB - Elsevier
SP - 100226
VL - 25
SN - 2590-1974
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2025_Gómez,
author = {Ingry N Gómez and Camilo Restrepo Estrada and Alejandro Builes-Jaramillo and João Paulo Albuquerque Cavalcanti De Albuquerque},
title = {Advanced AI techniques for landslide susceptibility mapping and spatial prediction: A case study in Medellín, Colombia},
journal = {Applied Computing and Geosciences},
year = {2025},
volume = {25},
publisher = {Elsevier},
month = {feb},
url = {https://linkinghub.elsevier.com/retrieve/pii/S2590197425000084},
pages = {100226},
doi = {10.1016/j.acags.2025.100226}
}