volume 73 pages 101671

Adaptive Parameter Selection for Kernel Ridge Regression

Publication typeJournal Article
Publication date2024-11-01
scimago Q1
wos Q1
SJR2.046
CiteScore6.4
Impact factor3.2
ISSN10635203, 1096603X
Abstract
This paper focuses on parameter selection issues of kernel ridge regression (KRR). Due to special spectral properties of KRR, we find that delicate subdivision of the parameter interval shrinks the difference between two successive KRR estimates. Based on this observation, we develop an early-stopping type parameter selection strategy for KRR according to the so-called Lepskii-type principle. Theoretical verifications are presented in the framework of learning theory to show that KRR equipped with the proposed parameter selection strategy succeeds in achieving optimal learning rates and adapts to different norms, providing a new record of parameter selection for kernel methods.
Found 
Found 

Top-30

Journals

1
Journal of the European Ceramic Society
1 publication, 33.33%
Pattern Recognition Letters
1 publication, 33.33%
1

Publishers

1
2
Elsevier
2 publications, 66.67%
Institute of Electrical and Electronics Engineers (IEEE)
1 publication, 33.33%
1
2
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
3
Share
Cite this
GOST |
Cite this
GOST Copy
Lin S. Adaptive Parameter Selection for Kernel Ridge Regression // Applied and Computational Harmonic Analysis. 2024. Vol. 73. p. 101671.
GOST all authors (up to 50) Copy
Lin S. Adaptive Parameter Selection for Kernel Ridge Regression // Applied and Computational Harmonic Analysis. 2024. Vol. 73. p. 101671.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1016/j.acha.2024.101671
UR - https://linkinghub.elsevier.com/retrieve/pii/S1063520324000484
TI - Adaptive Parameter Selection for Kernel Ridge Regression
T2 - Applied and Computational Harmonic Analysis
AU - Lin, Shao-Bo
PY - 2024
DA - 2024/11/01
PB - Elsevier
SP - 101671
VL - 73
SN - 1063-5203
SN - 1096-603X
ER -
BibTex
Cite this
BibTex (up to 50 authors) Copy
@article{2024_Lin,
author = {Shao-Bo Lin},
title = {Adaptive Parameter Selection for Kernel Ridge Regression},
journal = {Applied and Computational Harmonic Analysis},
year = {2024},
volume = {73},
publisher = {Elsevier},
month = {nov},
url = {https://linkinghub.elsevier.com/retrieve/pii/S1063520324000484},
pages = {101671},
doi = {10.1016/j.acha.2024.101671}
}