Adaptive Parameter Selection for Kernel Ridge Regression
Publication type: Journal Article
Publication date: 2024-11-01
scimago Q1
wos Q1
SJR: 2.046
CiteScore: 6.4
Impact factor: 3.2
ISSN: 10635203, 1096603X
Abstract
This paper focuses on parameter selection issues of kernel ridge regression (KRR). Due to special spectral properties of KRR, we find that delicate subdivision of the parameter interval shrinks the difference between two successive KRR estimates. Based on this observation, we develop an early-stopping type parameter selection strategy for KRR according to the so-called Lepskii-type principle. Theoretical verifications are presented in the framework of learning theory to show that KRR equipped with the proposed parameter selection strategy succeeds in achieving optimal learning rates and adapts to different norms, providing a new record of parameter selection for kernel methods.
Found
Nothing found, try to update filter.
Found
Nothing found, try to update filter.
Top-30
Journals
|
1
|
|
|
Journal of the European Ceramic Society
1 publication, 33.33%
|
|
|
Pattern Recognition Letters
1 publication, 33.33%
|
|
|
1
|
Publishers
|
1
2
|
|
|
Elsevier
2 publications, 66.67%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
1 publication, 33.33%
|
|
|
1
2
|
- We do not take into account publications without a DOI.
- Statistics recalculated weekly.
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
3
Total citations:
3
Citations from 2024:
3
(100%)
Cite this
GOST |
RIS |
BibTex
Cite this
GOST
Copy
Lin S. Adaptive Parameter Selection for Kernel Ridge Regression // Applied and Computational Harmonic Analysis. 2024. Vol. 73. p. 101671.
GOST all authors (up to 50)
Copy
Lin S. Adaptive Parameter Selection for Kernel Ridge Regression // Applied and Computational Harmonic Analysis. 2024. Vol. 73. p. 101671.
Cite this
RIS
Copy
TY - JOUR
DO - 10.1016/j.acha.2024.101671
UR - https://linkinghub.elsevier.com/retrieve/pii/S1063520324000484
TI - Adaptive Parameter Selection for Kernel Ridge Regression
T2 - Applied and Computational Harmonic Analysis
AU - Lin, Shao-Bo
PY - 2024
DA - 2024/11/01
PB - Elsevier
SP - 101671
VL - 73
SN - 1063-5203
SN - 1096-603X
ER -
Cite this
BibTex (up to 50 authors)
Copy
@article{2024_Lin,
author = {Shao-Bo Lin},
title = {Adaptive Parameter Selection for Kernel Ridge Regression},
journal = {Applied and Computational Harmonic Analysis},
year = {2024},
volume = {73},
publisher = {Elsevier},
month = {nov},
url = {https://linkinghub.elsevier.com/retrieve/pii/S1063520324000484},
pages = {101671},
doi = {10.1016/j.acha.2024.101671}
}