volume 356 pages 106805

The dual Minkowski problem for symmetric convex bodies

Publication typeJournal Article
Publication date2019-11-01
scimago Q1
wos Q1
SJR2.094
CiteScore3.0
Impact factor1.5
ISSN00018708, 10902082
General Mathematics
Abstract
The dual Minkowski problem for even data asks what are the necessary and sufficient conditions on a prescribed even measure on the unit sphere for it to be the q-th dual curvature measure of an origin-symmetric convex body in R n . A full solution to this is given when 1 q n . The necessary and sufficient conditions turn out to be an explicit measure concentration condition. To obtain the results, a variational approach is used, where the functional is the sum of a dual quermassintegral and an entropy integral. The proof requires two crucial estimates. The first is an estimate of the entropy integral which is obtained by using a spherical partition. The second is a sharp estimate of the dual quermassintegrals for a carefully chosen barrier convex body.
Found 
Found 

Top-30

Journals

1
2
3
4
5
6
Advances in Mathematics
6 publications, 14.63%
Calculus of Variations and Partial Differential Equations
5 publications, 12.2%
Journal of Geometric Analysis
4 publications, 9.76%
Advances in Applied Mathematics
3 publications, 7.32%
Mathematische Annalen
2 publications, 4.88%
Acta Mathematica Sinica, English Series
2 publications, 4.88%
Advanced Nonlinear Studies
2 publications, 4.88%
Open Mathematics
2 publications, 4.88%
Canadian Journal of Mathematics
1 publication, 2.44%
Mathematika
1 publication, 2.44%
Science China Mathematics
1 publication, 2.44%
Journal of Mathematical Analysis and Applications
1 publication, 2.44%
Journal of Functional Analysis
1 publication, 2.44%
Mathematische Nachrichten
1 publication, 2.44%
Communications on Pure and Applied Mathematics
1 publication, 2.44%
Filomat
1 publication, 2.44%
Chinese Annals of Mathematics. Series B
1 publication, 2.44%
Journal of Differential Equations
1 publication, 2.44%
Proceedings of the American Mathematical Society
1 publication, 2.44%
Scientia Sinica Mathematica
1 publication, 2.44%
Acta Mathematica Scientia
1 publication, 2.44%
International Mathematics Research Notices
1 publication, 2.44%
Qualitative Theory of Dynamical Systems
1 publication, 2.44%
1
2
3
4
5
6

Publishers

2
4
6
8
10
12
14
16
Springer Nature
16 publications, 39.02%
Elsevier
12 publications, 29.27%
Walter de Gruyter
4 publications, 9.76%
Science in China Press
2 publications, 4.88%
Wiley
2 publications, 4.88%
Canadian Mathematical Society
1 publication, 2.44%
Cambridge University Press
1 publication, 2.44%
University of Nis
1 publication, 2.44%
American Mathematical Society
1 publication, 2.44%
Oxford University Press
1 publication, 2.44%
2
4
6
8
10
12
14
16
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
41
Share
Cite this
GOST |
Cite this
GOST Copy
Böröczky K. J. et al. The dual Minkowski problem for symmetric convex bodies // Advances in Mathematics. 2019. Vol. 356. p. 106805.
GOST all authors (up to 50) Copy
Böröczky K. J., Lutwak E., Yang D., Zhang G., Zhao Yiming 赵. The dual Minkowski problem for symmetric convex bodies // Advances in Mathematics. 2019. Vol. 356. p. 106805.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1016/j.aim.2019.106805
UR - https://doi.org/10.1016/j.aim.2019.106805
TI - The dual Minkowski problem for symmetric convex bodies
T2 - Advances in Mathematics
AU - Böröczky, Károly J.
AU - Lutwak, Erwin
AU - Yang, Deane
AU - Zhang, Gaoyong
AU - Zhao Yiming, 赵一鸣
PY - 2019
DA - 2019/11/01
PB - Elsevier
SP - 106805
VL - 356
SN - 0001-8708
SN - 1090-2082
ER -
BibTex
Cite this
BibTex (up to 50 authors) Copy
@article{2019_Böröczky,
author = {Károly J. Böröczky and Erwin Lutwak and Deane Yang and Gaoyong Zhang and 赵一鸣 Zhao Yiming},
title = {The dual Minkowski problem for symmetric convex bodies},
journal = {Advances in Mathematics},
year = {2019},
volume = {356},
publisher = {Elsevier},
month = {nov},
url = {https://doi.org/10.1016/j.aim.2019.106805},
pages = {106805},
doi = {10.1016/j.aim.2019.106805}
}