Open Access
Design and evaluation of piperidine carboxamide derivatives as potent ALK inhibitors through 3D-QSAR modeling, artificial neural network and computational analysis
Yakun Zhang
1
,
Jianbo Tong
1
,
Mu-Xuan Luo
2
,
Xiaoyu Xing
1
,
Yang Yang
1
,
Zhi-Peng Qing
1
,
Ze‐Lei Chang
1
,
Yan-Rong Zeng
3
Тип публикации: Journal Article
Дата публикации: 2024-09-01
scimago Q1
wos Q2
БС1
SJR: 0.888
CiteScore: 10.4
Impact factor: 5.2
ISSN: 18785352, 18785379
Краткое описание
Tumor stands as one of the principal contributors to global mortality. As research into tumor treatments advances, tumor inhibitors emerge as pivotal milestones in tumor therapy. Among these inhibitors, Anaplastic Lymphoma Kinase (ALK), a receptor tyrosine kinase, is critical owing to its close association with tumor cell proliferation and growth, which renders it a critical therapeutic target. This work systematically explores the relationship between the chemical structures of 36 piperidine carboxamide derivatives and their efficacy in inhibiting Karpas-299 tumor cell activity by employing a rigorous 3D-QSAR modeling approach. A robust Topomer CoMFA model was generated and was meticulously validated through ANN neural network analysis (q2 = 0.597, r2 = 0.939, F = 84.401, N = 4, SEE = 0.268). Based on the model, 60 new compounds with desirable inhibitory activities were successfully designed. Combined with Lipinski's rule and ADMET criteria alongside molecular docking and dynamics simulations, a lead compound with high inhibitory activity and good drug-likeness was selected. Further computational analyses, encompassing free energy landscape and binding free energy calculations, provided compelling evidence of the stable binding conformation of the lead compound and the superior affinity with the target protein at the active site, underscoring its potential therapeutic utility. In summary, this investigation offers valuable insights and methodological guidance for advancing tumor therapy and underscores the promise of piperidine carboxamide derivatives as prospective ALK inhibitors.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
3
4
5
|
|
|
ChemistrySelect
5 публикаций, 31.25%
|
|
|
European Journal of Medicinal Chemistry
1 публикация, 6.25%
|
|
|
Journal of Asian Natural Products Research
1 публикация, 6.25%
|
|
|
Journal of Molecular Structure
1 публикация, 6.25%
|
|
|
SAR and QSAR in Environmental Research
1 публикация, 6.25%
|
|
|
Journal of Receptor and Signal Transduction Research
1 публикация, 6.25%
|
|
|
International Journal of Biological Macromolecules
1 публикация, 6.25%
|
|
|
Molecular Diversity
1 публикация, 6.25%
|
|
|
Pharmaceuticals
1 публикация, 6.25%
|
|
|
Journal of Environmental Chemical Engineering
1 публикация, 6.25%
|
|
|
In Silico Pharmacology
1 публикация, 6.25%
|
|
|
Current Issues in Molecular Biology
1 публикация, 6.25%
|
|
|
1
2
3
4
5
|
Издатели
|
1
2
3
4
5
|
|
|
Wiley
5 публикаций, 31.25%
|
|
|
Elsevier
4 публикации, 25%
|
|
|
Taylor & Francis
3 публикации, 18.75%
|
|
|
Springer Nature
2 публикации, 12.5%
|
|
|
MDPI
2 публикации, 12.5%
|
|
|
1
2
3
4
5
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
16
Всего цитирований:
16
Цитирований c 2024:
16
(100%)
Цитировать
ГОСТ |
RIS |
BibTex |
MLA
Цитировать
ГОСТ
Скопировать
Zhang Y. et al. Design and evaluation of piperidine carboxamide derivatives as potent ALK inhibitors through 3D-QSAR modeling, artificial neural network and computational analysis // Arabian Journal of Chemistry. 2024. Vol. 17. No. 9. p. 105863.
ГОСТ со всеми авторами (до 50)
Скопировать
Zhang Y., Tong J., Luo M., Xing X., Yang Y., Qing Z., Chang Z., Zeng Y. Design and evaluation of piperidine carboxamide derivatives as potent ALK inhibitors through 3D-QSAR modeling, artificial neural network and computational analysis // Arabian Journal of Chemistry. 2024. Vol. 17. No. 9. p. 105863.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1016/j.arabjc.2024.105863
UR - https://linkinghub.elsevier.com/retrieve/pii/S187853522400265X
TI - Design and evaluation of piperidine carboxamide derivatives as potent ALK inhibitors through 3D-QSAR modeling, artificial neural network and computational analysis
T2 - Arabian Journal of Chemistry
AU - Zhang, Yakun
AU - Tong, Jianbo
AU - Luo, Mu-Xuan
AU - Xing, Xiaoyu
AU - Yang, Yang
AU - Qing, Zhi-Peng
AU - Chang, Ze‐Lei
AU - Zeng, Yan-Rong
PY - 2024
DA - 2024/09/01
PB - Elsevier
SP - 105863
IS - 9
VL - 17
SN - 1878-5352
SN - 1878-5379
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2024_Zhang,
author = {Yakun Zhang and Jianbo Tong and Mu-Xuan Luo and Xiaoyu Xing and Yang Yang and Zhi-Peng Qing and Ze‐Lei Chang and Yan-Rong Zeng},
title = {Design and evaluation of piperidine carboxamide derivatives as potent ALK inhibitors through 3D-QSAR modeling, artificial neural network and computational analysis},
journal = {Arabian Journal of Chemistry},
year = {2024},
volume = {17},
publisher = {Elsevier},
month = {sep},
url = {https://linkinghub.elsevier.com/retrieve/pii/S187853522400265X},
number = {9},
pages = {105863},
doi = {10.1016/j.arabjc.2024.105863}
}
Цитировать
MLA
Скопировать
Zhang, Ya-Kun, et al. “Design and evaluation of piperidine carboxamide derivatives as potent ALK inhibitors through 3D-QSAR modeling, artificial neural network and computational analysis.” Arabian Journal of Chemistry, vol. 17, no. 9, Sep. 2024, p. 105863. https://linkinghub.elsevier.com/retrieve/pii/S187853522400265X.