том 297 страницы 120295

Optimization and prediction of catalysts for precise synthesis of methyl glycolate from dimethyl oxalate using machine learning coupled with particle swarm optimization algorithm

Qingchun Yang 1, 2
JIANLONG ZHOU 2
Runjie Bao 2
Dongwen Rong 2
Lei Zhao 2
Dawei Zhang 2
Тип публикацииJournal Article
Дата публикации2024-09-01
scimago Q1
wos Q2
БС1
SJR0.840
CiteScore7.9
Impact factor4.3
ISSN00092509, 18734405
Краткое описание
To optimize and predict the catalyst for precise synthesis of methyl glycolate (MG) from dimethyl oxalate, this study proposed a six-step machine learning framework coupled with a particle swarm optimization algorithm. The random forest (RF) model has the highest prediction accuracy after optimizing its hyperparameters. This preferred model has been rigorously validated using experimental data, showcasing a remarkable level of consistency with the observed trends. Then the catalytic performance of the dimethyl oxalate to methyl glycolate (DtMG) process is evaluated by the feature importance analysis and partial dependence plot approaches. It is recommended to operate at lower temperatures and pressures, higher space velocities, and hydrogen-to-ester ratio for MG production. Finally, the RF model coupled with the particle swarm optimization algorithm is employed to predict the optimal catalyst for maximizing MG yield and minimizing cost of the DtMG process, which successfully predicts seven new catalysts with higher yields and lower costs.
Найдено 
Найдено 

Топ-30

Журналы

1
2
Journal of Water Process Engineering
2 публикации, 11.76%
Chemical Engineering Science
2 публикации, 11.76%
Journal of Cleaner Production
2 публикации, 11.76%
Industrial & Engineering Chemistry Research
1 публикация, 5.88%
Journal of Molecular Structure
1 публикация, 5.88%
Advanced Energy Materials
1 публикация, 5.88%
Separation and Purification Technology
1 публикация, 5.88%
Energy
1 публикация, 5.88%
Chemical Engineering Research and Design
1 публикация, 5.88%
Environmental Science and Engineering
1 публикация, 5.88%
AICHE Journal
1 публикация, 5.88%
ACS Catalysis
1 публикация, 5.88%
Journal of Materials Chemistry A
1 публикация, 5.88%
1
2

Издатели

2
4
6
8
10
Elsevier
10 публикаций, 58.82%
American Chemical Society (ACS)
2 публикации, 11.76%
Wiley
2 публикации, 11.76%
Institute of Electrical and Electronics Engineers (IEEE)
1 публикация, 5.88%
Springer Nature
1 публикация, 5.88%
Royal Society of Chemistry (RSC)
1 публикация, 5.88%
2
4
6
8
10
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
17
Поделиться
Цитировать
ГОСТ |
Цитировать
Yang Q. et al. Optimization and prediction of catalysts for precise synthesis of methyl glycolate from dimethyl oxalate using machine learning coupled with particle swarm optimization algorithm // Chemical Engineering Science. 2024. Vol. 297. p. 120295.
ГОСТ со всеми авторами (до 50) Скопировать
Yang Q., ZHOU J., Bao R., Rong D., Zhao L., Zhang D. Optimization and prediction of catalysts for precise synthesis of methyl glycolate from dimethyl oxalate using machine learning coupled with particle swarm optimization algorithm // Chemical Engineering Science. 2024. Vol. 297. p. 120295.
RIS |
Цитировать
TY - JOUR
DO - 10.1016/j.ces.2024.120295
UR - https://linkinghub.elsevier.com/retrieve/pii/S0009250924005955
TI - Optimization and prediction of catalysts for precise synthesis of methyl glycolate from dimethyl oxalate using machine learning coupled with particle swarm optimization algorithm
T2 - Chemical Engineering Science
AU - Yang, Qingchun
AU - ZHOU, JIANLONG
AU - Bao, Runjie
AU - Rong, Dongwen
AU - Zhao, Lei
AU - Zhang, Dawei
PY - 2024
DA - 2024/09/01
PB - Elsevier
SP - 120295
VL - 297
SN - 0009-2509
SN - 1873-4405
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2024_Yang,
author = {Qingchun Yang and JIANLONG ZHOU and Runjie Bao and Dongwen Rong and Lei Zhao and Dawei Zhang},
title = {Optimization and prediction of catalysts for precise synthesis of methyl glycolate from dimethyl oxalate using machine learning coupled with particle swarm optimization algorithm},
journal = {Chemical Engineering Science},
year = {2024},
volume = {297},
publisher = {Elsevier},
month = {sep},
url = {https://linkinghub.elsevier.com/retrieve/pii/S0009250924005955},
pages = {120295},
doi = {10.1016/j.ces.2024.120295}
}