Current Opinion in Endocrine and Metabolic Research, volume 37, pages 100546

Cholinergic signaling in adipose tissue

Vladimir S. Shavva
Laura Tarnawski
Ting Liu
Lei Zhu
Osman Ahmed
Peder S Olofsson
Publication typeJournal Article
Publication date2024-12-01
scimago Q3
SJR0.587
CiteScore4.1
Impact factor
ISSN24519650
Luo S., Lin H., Wu C., Zhu L., Hua Q., Weng Y., Wang L., Fan X., Zhao K., Liu G., Wang Y., Chen H., Xu L., Zheng L.
2024-06-26 citations by CoLab: 2 Abstract  
The non-neural cholinergic system plays a critical role in regulating immune equilibrium and tissue homeostasis. While the expression of choline acetyltransferase (ChAT), the enzyme catalyzing acetylcholine biosynthesis, has been well documented in lymphocytes, its role in the myeloid compartment is less understood. Here, we identify a significant population of macrophages (Mϕs) expressing ChAT and synthesizing acetylcholine in the resolution phase of acute peritonitis. Using Chat -GFP reporter mice, we observed marked upregulation of ChAT in monocyte-derived small peritoneal Mϕs (SmPMs) in response to Toll-like receptor agonists and bacterial infections. These SmPMs, phenotypically and transcriptionally distinct from tissue-resident large peritoneal macrophages, up-regulated ChAT expression through a MyD88-dependent pathway involving MAPK signaling. Notably, this process was attenuated by the TRIF-dependent TLR signaling pathway, and our tests with a range of neurotransmitters and cytokines failed to induce a similar response. Functionally, Chat deficiency in Mϕs led to significantly decreased peritoneal acetylcholine levels, reduced efferocytosis of apoptotic neutrophils, and a delayed resolution of peritonitis, which were reversible with exogenous ACh supplementation. Intriguingly, despite B lymphocytes being a notable ChAT-expressing population within the peritoneal cavity, Chat deletion in B cells did not significantly alter the resolution process. Collectively, these findings underscore the crucial role of Mϕ-derived acetylcholine in the resolution of inflammation and highlight the importance of the non-neuronal cholinergic system in immune regulation.
Keever K.R., Cui K., Casteel J.L., Singh S., Hoover D.B., Williams D.L., Pavlov V.A., Yakubenko V.P.
Journal of Neuroinflammation scimago Q1 wos Q1 Open Access
2024-01-04 citations by CoLab: 6 PDF Abstract  
Abstract Background The involvement of the autonomic nervous system in the regulation of inflammation is an emerging concept with significant potential for clinical applications. Recent studies demonstrate that stimulating the vagus nerve activates the cholinergic anti-inflammatory pathway that inhibits pro-inflammatory cytokines and controls inflammation. The α7 nicotinic acetylcholine receptor (α7nAChR) on macrophages plays a key role in mediating cholinergic anti-inflammatory effects through a downstream intracellular mechanism involving inhibition of NF-κB signaling, which results in suppression of pro-inflammatory cytokine production. However, the role of the α7nAChR in the regulation of other aspects of the immune response, including the recruitment of monocytes/macrophages to the site of inflammation remained poorly understood. Results We observed an increased mortality in α7nAChR-deficient mice (compared with wild-type controls) in mice with endotoxemia, which was paralleled with a significant reduction in the number of monocyte-derived macrophages in the lungs. Corroborating these results, fluorescently labeled α7nAChR-deficient monocytes adoptively transferred to WT mice showed significantly diminished recruitment to the inflamed tissue. α7nAChR deficiency did not affect monocyte 2D transmigration across an endothelial monolayer, but it significantly decreased the migration of macrophages in a 3D fibrin matrix. In vitro analysis of major adhesive receptors (L-selectin, β1 and β2 integrins) and chemokine receptors (CCR2 and CCR5) revealed reduced expression of integrin αM and αX on α7nAChR-deficient macrophages. Decreased expression of αMβ2 was confirmed on fluorescently labeled, adoptively transferred α7nAChR-deficient macrophages in the lungs of endotoxemic mice, indicating a potential mechanism for α7nAChR-mediated migration. Conclusions We demonstrate a novel role for the α7nAChR in mediating macrophage recruitment to inflamed tissue, which indicates an important new aspect of the cholinergic regulation of immune responses and inflammation.
Severi I., Perugini J., Ruocco C., Coppi L., Pedretti S., Di Mercurio E., Senzacqua M., Ragni M., Imperato G., Valerio A., Mitro N., Crestani M., Nisoli E., Giordano A.
Molecular Metabolism scimago Q1 wos Q1 Open Access
2024-01-01 citations by CoLab: 1 Abstract  
Since white adipose tissue (WAT) lacks parasympathetic cholinergic innervation, the source of the acetylcholine (ACh) acting on white adipocyte cholinergic receptors is unknown. This study was designed to identify ACh-producing cells in mouse and human visceral WAT and to determine whether a non-neuronal cholinergic system becomes activated in obese inflamed WAT. Mouse epididymal WAT (eWAT) and human omental fat were studied in normal and obese subjects. The expression of the key molecules involved in cholinergic signaling was evaluated by qRT-PCR and western blotting whereas their tissue distribution and cellular localization were investigated by immunohistochemistry, confocal microscopy and in situ hybridization. ACh levels were measured by liquid chromatography/tandem mass spectrometry. The cellular effects of ACh were assessed in cultured human multipotent adipose-derived stem cell (hMADS) adipocytes. In mouse eWAT, diet-induced obesity modulated the expression of key cholinergic molecular components and, especially, raised the expression of choline acetyltransferase (ChAT), the ACh-synthesizing enzyme, which was chiefly detected in interstitial macrophages, in macrophages forming crown-like structures (CLSs), and in multinucleated giant cells (MGCs). The stromal vascular fraction of obese mouse eWAT contained significantly higher ACh and choline levels than that of control mice. ChAT was undetectable in omental fat from healthy subjects, whereas it was expressed in a number of interstitial macrophages, CLSs, and MGCs from some obese individuals. In hMADS adipocytes stressed with tumor necrosis factor α, ACh, alone or combined with rivastigmine, significantly blunted monocyte chemoattractant protein 1 and interleukin 6 expression, it partially but significantly, restored adiponectin and GLUT4 expression, and promoted glucose uptake. In mouse and human visceral WAT, obesity induces activation of a macrophage-dependent non-neuronal cholinergic system that is capable of exerting anti-inflammatory and insulin-sensitizing effects on white adipocytes.
Nakamura Y., Matsumoto H., Wu C., Fukaya D., Uni R., Hirakawa Y., Katagiri M., Yamada S., Ko T., Nomura S., Wada Y., Komuro I., Nangaku M., Inagi R., Inoue T.
Communications Biology scimago Q1 wos Q1 Open Access
2023-06-23 citations by CoLab: 13 PDF Abstract  
AbstractActivation of the cholinergic anti-inflammatory pathway (CAP) via vagus nerve stimulation has been shown to improve acute kidney injury in rodent models. While alpha 7 nicotinic acetylcholine receptor (α7nAChR) positive macrophages are thought to play a crucial role in this pathway, their in vivo significance has not been fully understood. In this study, we used macrophage-specific α7nAChR-deficient mice to confirm the direct activation of α7nAChRs in macrophages. Our findings indicate that the administration of GTS-21, an α7nAChR-specific agonist, protects injured kidneys in wild-type mice but not in macrophage-specific α7nAChR-deficient mice. To investigate the signal changes or cell reconstructions induced by α7nAChR activation in splenocytes, we conducted single-cell RNA-sequencing of the spleen. Ligand-receptor analysis revealed an increase in macrophage-macrophage interactions. Using macrophage-derived cell lines, we demonstrated that GTS-21 increases cell contact, and that the contact between macrophages receiving α7nAChR signals leads to a reduction in TNF-α. Our results suggest that α7nAChR signaling increases macrophage-macrophage interactions in the spleen and has a protective effect on the kidneys.
Simon T., Kirk J., Dolezalova N., Guyot M., Panzolini C., Bondue A., Lavergne J., Hugues S., Hypolite N., Saeb-Parsy K., Perkins J., Macia E., Sridhar A., Vervoordeldonk M.J., Glaichenhaus N., et. al.
Frontiers in Neuroscience scimago Q2 wos Q2 Open Access
2023-04-14 citations by CoLab: 18 PDF Abstract  
The magnitude of innate inflammatory immune responses is dependent on interactions between peripheral neural and immune cells. In particular, a cholinergic anti-inflammatory pathway (CAP) has been identified in the spleen whereby noradrenaline (NA) released by splenic nerves binds to ß2-adrenergic receptors (β2-AR) on CD4+ T cells which, in turn, release acetylcholine (ACh). The binding of ACh to α7 acetylcholine receptors (α7-AChR) expressed by splenic macrophages inhibits the production of inflammatory cytokines, including tumor necrosis factor (TNF). However, the role of ACh-secreting CD4+ T-cells in the CAP is still controversial and largely based on the absence of this anti-inflammatory pathway in mice lacking T-cells (nude, FoxN1−/−). Using four conscious, non-lymphopenic transgenic mouse models, we found that, rather than acting on CD4+ T-cells, NA released by splenic nerve terminals acts directly onto β2-AR on splenic myeloid cells to exert this anti-inflammatory effect. We also show that, while larger doses of LPS are needed to trigger CAP in nude mouse strain compared to other strains, TNF production can be inhibited in these animals lacking CD4+ T-cell by stimulating either the vagus or the splenic nerve. We demonstrate that CD4+ T-cells are dispensable for the CAP after antibody-mediated CD4+ T-cell depletion in wild type mice. Furthermore, we found that NA-mediated inhibition of in vitro LPS-induced TNF secretion by human or porcine splenocytes does not require α7-AChR signaling. Altogether our data demonstrate that activation of the CAP by stimulation of vagus or splenic nerves in mice is mainly mediated by direct binding of NA to β2-AR on splenic macrophages, and suggest that the same mechanism is at play in larger species.
Tarnawski L., Shavva V.S., Kort E., Zhuge Z., Nilsson I., Gallina A., Martínez-Enguita D., Heller Sahlgren B., Weiland M., Caravaca A., Schmidt S., Chen P., Abbas K., Wang F., Ahmed O., et. al.
2023-03-29 citations by CoLab: 19 Abstract  
Endothelial dysfunction and impaired vasodilation are linked with adverse cardiovascular events. T lymphocytes expressing choline acetyltransferase (ChAT), the enzyme catalyzing biosynthesis of the vasorelaxant acetylcholine (ACh), regulate vasodilation and are integral to the cholinergic antiinflammatory pathway in an inflammatory reflex in mice. Here, we found that human T cell ChAT mRNA expression was induced by T cell activation involving the PI3K signaling cascade. Mechanistically, we identified that ChAT mRNA expression was induced following the attenuation of RE-1 Silencing Transcription factor REST-mediated methylation of the ChAT promoter, and that ChAT mRNA expression levels were up-regulated by GATA3 in human T cells. In functional experiments, T cell-derived ACh increased endothelial nitric oxide-synthase activity, promoted vasorelaxation, and reduced vascular endothelial activation and promoted barrier integrity by a cholinergic mechanism. Further, we observed that survival in a cohort of patients with severe circulatory failure correlated with their relative frequency of ChAT  + CD4 + T cells in blood. These findings on ChAT + human T cells provide a mechanism for cholinergic immune regulation of vascular endothelial function in human inflammation.
Metz M., Beghini M., Wolf P., Pfleger L., Hackl M., Bastian M., Freudenthaler A., Harreiter J., Zeyda M., Baumgartner-Parzer S., Marculescu R., Marella N., Hannich J.T., Györi G., Berlakovich G., et. al.
Cell Metabolism scimago Q1 wos Q1
2022-11-01 citations by CoLab: 36 Abstract  
Summary Recombinant human leptin (metreleptin) reduces hepatic lipid content in patients with lipodystrophy and overweight patients with non-alcoholic fatty liver disease and relative hypoleptinemia independent of its anorexic action. In rodents, leptin signaling in the brain increases very-low-density lipoprotein triglyceride (VLDL-TG) secretion and reduces hepatic lipid content via the vagus nerve. In this randomized, placebo-controlled crossover trial (EudraCT Nr. 2017-003014-22), we tested whether a comparable mechanism regulates hepatic lipid metabolism in humans. A single metreleptin injection stimulated hepatic VLDL-TG secretion (primary outcome) and reduced hepatic lipid content in fasted, lean men (n = 13, age range 20–38 years) but failed to do so in metabolically healthy liver transplant recipients (n = 9, age range 26–62 years) who represent a model for hepatic denervation. In an independent cohort of lean men (n = 10, age range 23–31 years), vagal stimulation by modified sham feeding replicated the effects of metreleptin on VLDL-TG secretion. Therefore, we propose that leptin has anti-steatotic properties that are independent of food intake by stimulating hepatic VLDL-TG export via a brain-vagus-liver axis.
Wang Y., Leung V.H., Zhang Y., Nudell V.S., Loud M., Servin-Vences M.R., Yang D., Wang K., Moya-Garzon M.D., Li V.L., Long J.Z., Patapoutian A., Ye L.
Nature scimago Q1 wos Q1
2022-08-31 citations by CoLab: 62 Abstract  
Adipose tissues communicate with the central nervous system to maintain whole-body energy homeostasis. The mainstream view is that circulating hormones secreted by the fat convey the metabolic state to the brain, which integrates peripheral information and regulates adipocyte function through noradrenergic sympathetic output1. Moreover, somatosensory neurons of the dorsal root ganglia innervate adipose tissue2. However, the lack of genetic tools to selectively target these neurons has limited understanding of their physiological importance. Here we developed viral, genetic and imaging strategies to manipulate sensory nerves in an organ-specific manner in mice. This enabled us to visualize the entire axonal projection of dorsal root ganglia from the soma to subcutaneous adipocytes, establishing the anatomical underpinnings of adipose sensory innervation. Functionally, selective sensory ablation in adipose tissue enhanced the lipogenic and thermogenetic transcriptional programs, resulting in an enlarged fat pad, enrichment of beige adipocytes and elevated body temperature under thermoneutral conditions. The sensory-ablation-induced phenotypes required intact sympathetic function. We postulate that beige-fat-innervating sensory neurons modulate adipocyte function by acting as a brake on the sympathetic system. These results reveal an important role of the innervation by dorsal root ganglia of adipose tissues, and could enable future studies to examine the role of sensory innervation of disparate interoceptive systems. Beige-fat-innervating sensory neurons modulate adipocyte function by acting as a brake on the sympathetic system.
Schloss M.J., Hulsmans M., Rohde D., Lee I., Severe N., Foy B.H., Pulous F.E., Zhang S., Kokkaliaris K.D., Frodermann V., Courties G., Yang C., Iwamoto Y., Knudsen A.S., McAlpine C.S., et. al.
Nature Immunology scimago Q1 wos Q1
2022-03-28 citations by CoLab: 54 Abstract  
Autonomic nerves control organ function through the sympathetic and parasympathetic branches, which have opposite effects. In the bone marrow, sympathetic (adrenergic) nerves promote hematopoiesis; however, how parasympathetic (cholinergic) signals modulate hematopoiesis is unclear. Here, we show that B lymphocytes are an important source of acetylcholine, a neurotransmitter of the parasympathetic nervous system, which reduced hematopoiesis. Single-cell RNA sequencing identified nine clusters of cells that expressed the cholinergic α7 nicotinic receptor (Chrna7) in the bone marrow stem cell niche, including endothelial and mesenchymal stromal cells (MSCs). Deletion of B cell-derived acetylcholine resulted in the differential expression of various genes, including Cxcl12 in leptin receptor+ (LepR+) stromal cells. Pharmacologic inhibition of acetylcholine esterase decreased the systemic supply of inflammatory myeloid cells in mice and humans with cardiovascular disease. Nahrendorf and colleagues show that B cells in the bone marrow are an important source of the neurotransmitter acetylcholine, which limits hematopoiesis through modulating the signals produced by the bone marrow stromal niche during steady-state and emergency hematopoiesis.
Rohm T.V., Meier D.T., Olefsky J.M., Donath M.Y.
Immunity scimago Q1 wos Q1
2022-01-11 citations by CoLab: 947 Abstract  
Obesity leads to chronic, systemic inflammation and can lead to insulin resistance (IR), β-cell dysfunction, and ultimately type 2 diabetes (T2D). This chronic inflammatory state contributes to long-term complications of diabetes, including non-alcoholic fatty liver disease (NAFLD), retinopathy, cardiovascular disease, and nephropathy, and may underlie the association of type 2 diabetes with other conditions such as Alzheimer's disease, polycystic ovarian syndrome, gout, and rheumatoid arthritis. Here, we review the current understanding of the mechanisms underlying inflammation in obesity, T2D, and related disorders. We discuss how chronic tissue inflammation results in IR, impaired insulin secretion, glucose intolerance, and T2D and review the effect of inflammation on diabetic complications and on the relationship between T2D and other pathologies. In this context, we discuss current therapeutic options for the treatment of metabolic disease, advances in the clinic and the potential of immune-modulatory approaches.
Knights A.J., Liu S., Ma Y., Nudell V.S., Perkey E., Sorensen M.J., Kennedy R.T., Maillard I., Ye L., Jun H., Wu J.
EMBO Journal scimago Q1 wos Q1 Open Access
2021-08-30 citations by CoLab: 30
Meng W., Xiao T., Liang X., Wen J., Peng X., Wang J., Zou Y., Liu J., Bialowas C., Luo H., Zhang Y., Liu B., Zhang J., Hu F., Liu M., et. al.
JCI insight scimago Q1 wos Q1 Open Access
2021-07-15 citations by CoLab: 22 Abstract  
A dynamically regulated microenvironment, which is mediated by crosstalk between adipocytes and neighboring cells, is critical for adipose tissue homeostasis and function. However, information on key molecules and/or signaling pathways regulating the crosstalk remains limited. In this study, we identify adipocyte miRNA-182-5p (miR-182-5p) as a crucial antiobesity molecule that stimulated beige fat thermogenesis by promoting the crosstalk between adipocytes and macrophages. miR-182-5p was highly enriched in thermogenic adipocytes, and its expression was markedly stimulated by cold exposure in mice. In contrast, miR-182-5p expression was significantly reduced in adipose tissues of obese humans and mice. Knockout of miR-185-5p decreased cold-induced beige fat thermogenesis whereas overexpression of miR-185-5p increased beiging and thermogenesis in mice. Mechanistically, miR-182-5p promoted FGF21 expression and secretion in adipocytes by suppressing nuclear receptor subfamily 1 group D member 1 (Nr1d1) at 5'-UTR, which in turn stimulates acetylcholine synthesis and release in macrophages. Increased acetylcholine expression activated the nicotine acetylcholine receptor in adipocytes, which stimulated PKA signaling and consequent thermogenic gene expression. Our study reveals a key role of the miR-182-5p/FGF21/acetylcholine/acetylcholine receptor axis that mediates the crosstalk between adipocytes and macrophages to promote beige fat thermogenesis. Activation of the miR-182-5p-induced signaling pathway in adipose tissue may be an effective approach to ameliorate obesity and associated metabolic diseases.
Kuchler J.C., Siqueira B.S., Ceglarek V.M., Chasko F.V., Moura I.C., Sczepanhak B.F., Vettorazzi J.F., Balbo S.L., Grassiolli S.
Frontiers in Physiology scimago Q2 wos Q2 Open Access
2021-06-25 citations by CoLab: 7 PDF Abstract  
The vagus nerve (VN) and spleen represent a complex interface between neural and immunological functions, affecting both energy metabolism and white adipose tissue (WAT) content. Here, we evaluated whether vagal and splenic axis participates in WAT mass regulation in obese and non-obese male Wistar rats. High doses of monosodium glutamate (M; 4 g/Kg) were administered during the neonatal period to induce hypothalamic lesion and obesity (M-Obese rats). Non-obese or Control (CTL) rats received equimolar saline. At 60 days of life, M-Obese and CTL rats were randomly distributed into experimental subgroups according to the following surgical procedures: sham, subdiaphragmatic vagotomy (SV), splenectomy (SPL), and SV + SPL (n = 11 rats/group). At 150 days of life and after 12 h of fasting, rats were euthanized, blood was collected, and the plasma levels of glucose, triglycerides, cholesterol, insulin, and interleukin 10 (IL10) were analyzed. The visceral and subcutaneous WAT depots were excised, weighed, and histologically evaluated for number and size of adipocytes as well as IL10 protein expression. M-Obese rats showed higher adiposity, hyperinsulinemia, hypertriglyceridemia, and insulin resistance when compared with CTL groups (p < 0.05). In CTL and M-Obese rats, SV reduced body weight gain and triglycerides levels, diminishing adipocyte size without changes in IL10 expression in WAT (p< 0.05). The SV procedure resulted in high IL10 plasma levels in CTL rats, but not in the M-Obese group. The splenectomy prevented the SV anti-adiposity effects, as well as blocked the elevation of IL10 levels in plasma of CTL rats. In contrast, neither SV nor SPL surgeries modified the plasma levels of IL10 and IL10 protein expression in WAT from M-Obese rats. In conclusion, vagotomy promotes body weight and adiposity reduction, elevating IL10 plasma levels in non-obese animals, in a spleen-dependent manner. Under hypothalamic obesity conditions, VN ablation also reduces body weight gain and adiposity, improving insulin sensitivity without changes in IL10 protein expression in WAT or IL10 plasma levels, in a spleen-independent manner. Our findings indicate that the vagal-spleen axis influence the WAT mass in a health state, while this mechanism seems to be disturbed in hypothalamic obese animals.
Roberts L.B., Schnoeller C., Berkachy R., Darby M., Pillaye J., Oudhoff M.J., Parmar N., Mackowiak C., Sedda D., Quesniaux V., Ryffel B., Vaux R., Gounaris K., Berrard S., Withers D.R., et. al.
Science immunology scimago Q1 wos Q1
2021-03-04 citations by CoLab: 64 Abstract  
Synthesis of acetylcholine by group 2 innate lymphoid cells is important for optimal immune responses to helminth infection.
Fontaine A.K., Ramirez D.G., Littich S.F., Piscopio R.A., Kravets V., Schleicher W.E., Mizoguchi N., Caldwell J.H., Weir R.F., Benninger R.K.
Scientific Reports scimago Q1 wos Q1 Open Access
2021-02-11 citations by CoLab: 24 PDF Abstract  
Previous studies have demonstrated stimulation of endocrine pancreas function by vagal nerve electrical stimulation. While this increases insulin secretion, expected concomitant reductions in circulating glucose do not occur. A complicating factor is the non-specific nature of electrical nerve stimulation. Optogenetic tools, however, provide the potential for cell-type specific neural stimulation using genetic targeting and/or spatially shaped excitation light. Here, we demonstrate light-activated stimulation of the endocrine pancreas by targeting parasympathetic (cholinergic) axons. In a mouse model expressing ChannelRhodopsin2 (ChR2) in cholinergic cells, serum insulin and glucose were measured in response to (1) ultrasound image-guided optical stimulation of axon terminals in the pancreas or (2) optical stimulation of axons of the cervical vagus nerve. Measurements were made in basal-glucose and glucose-stimulated conditions. Significant increases in plasma insulin occurred relative to controls under both pancreas and cervical vagal stimulation, while a rapid reduction in glycemic levels were observed under pancreatic stimulation. Additionally, ultrasound-based measurements of blood flow in the pancreas were increased under pancreatic stimulation. Together, these results demonstrate the utility of in-vivo optogenetics for studying the neural regulation of endocrine pancreas function and suggest its therapeutic potential for the control of insulin secretion and glucose homeostasis.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex
Found error?