Network traffic prediction with Attention-based Spatial–Temporal Graph Network
2
Engineering Research Center of Big Data Intelligence, Ministry of Education, China
|
Тип публикации: Journal Article
Дата публикации: 2024-04-01
scimago Q1
wos Q1
БС1
SJR: 1.170
CiteScore: 9.3
Impact factor: 4.6
ISSN: 13891286, 18727069
Computer Networks and Communications
Краткое описание
Network traffic prediction plays a significant role in network management. Previous network traffic prediction methods mainly focus on the temporal relationship between network traffic, and used time series models to predict network traffic, ignoring the spatial information contained in traffic data. Therefore, the prediction accuracy is limited, especially in long-term prediction. To improve the prediction accuracy of the dynamic network traffic in the long term, we propose an Attention-based Spatial-Temporal Graph Network (ASTGN) model for network traffic prediction to better capture both the temporal and spatial relations between the network traffic. Specifically, in ASTGN, we exploit an encoder–decoder architecture, where the encoder encodes the input network traffic and the decoder outputs the predicted network traffic sequences, integrating the temporal and spatial information of the network traffic data through the Spatio-Temporal Embedding module. The experimental results demonstrate the superiority of our proposed method ASTGN in long-term prediction.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
3
|
|
|
Computer Networks
3 публикации, 20%
|
|
|
Energies
1 публикация, 6.67%
|
|
|
Advances in Wireless Technologies and Telecommunication
1 публикация, 6.67%
|
|
|
Physica A: Statistical Mechanics and its Applications
1 публикация, 6.67%
|
|
|
Internet Technology Letters
1 публикация, 6.67%
|
|
|
International Journal of Communication Systems
1 публикация, 6.67%
|
|
|
Computers and Electrical Engineering
1 публикация, 6.67%
|
|
|
Archives of Computational Methods in Engineering
1 публикация, 6.67%
|
|
|
Air Quality, Atmosphere and Health
1 публикация, 6.67%
|
|
|
High-Confidence Computing
1 публикация, 6.67%
|
|
|
IEEE Transactions on Network and Service Management
1 публикация, 6.67%
|
|
|
1
2
3
|
Издатели
|
1
2
3
4
5
6
|
|
|
Elsevier
6 публикаций, 40%
|
|
|
Wiley
2 публикации, 13.33%
|
|
|
Springer Nature
2 публикации, 13.33%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
2 публикации, 13.33%
|
|
|
MDPI
1 публикация, 6.67%
|
|
|
IGI Global
1 публикация, 6.67%
|
|
|
Association for Computing Machinery (ACM)
1 публикация, 6.67%
|
|
|
1
2
3
4
5
6
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
15
Всего цитирований:
15
Цитирований c 2024:
15
(100%)
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Peng Yu. et al. Network traffic prediction with Attention-based Spatial–Temporal Graph Network // Computer Networks. 2024. Vol. 243. p. 110296.
ГОСТ со всеми авторами (до 50)
Скопировать
Peng Yu., Peng Y., Guo Y., Hao R., Xu C. Network traffic prediction with Attention-based Spatial–Temporal Graph Network // Computer Networks. 2024. Vol. 243. p. 110296.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1016/j.comnet.2024.110296
UR - https://linkinghub.elsevier.com/retrieve/pii/S1389128624001282
TI - Network traffic prediction with Attention-based Spatial–Temporal Graph Network
T2 - Computer Networks
AU - Peng, Yu
AU - Peng, Yufei
AU - Guo, Yingya
AU - Hao, Run
AU - Xu, Chengzhe
PY - 2024
DA - 2024/04/01
PB - Elsevier
SP - 110296
VL - 243
SN - 1389-1286
SN - 1872-7069
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2024_Peng,
author = {Yu Peng and Yufei Peng and Yingya Guo and Run Hao and Chengzhe Xu},
title = {Network traffic prediction with Attention-based Spatial–Temporal Graph Network},
journal = {Computer Networks},
year = {2024},
volume = {243},
publisher = {Elsevier},
month = {apr},
url = {https://linkinghub.elsevier.com/retrieve/pii/S1389128624001282},
pages = {110296},
doi = {10.1016/j.comnet.2024.110296}
}