Discovery of Natural MCL1 Inhibitors using Pharmacophore modelling, QSAR, Docking, ADMET, Molecular Dynamics, and DFT Analysis
4
Biotechnology Industry Research Assistance Council (BIRAC), Department of Biotechnology (DBT), Ministry of Science and Technology, Government of India, Lodhi Road, New Delhi 110020, India
|
Тип публикации: Journal Article
Дата публикации: 2025-08-01
scimago Q2
wos Q1
БС1
SJR: 0.522
CiteScore: 4.3
Impact factor: 3.1
ISSN: 14769271, 1476928X
Краткое описание
Mcl-1, a member of the Bcl-2 family, is a crucial regulator of apoptosis, frequently overexpressed in various cancers, including lung, breast, pancreatic, cervical, ovarian cancers, leukemia, and lymphoma. Its anti-apoptotic function allows tumor cells to evade cell death and contributes to drug resistance, making it an essential target for anticancer drug development. This study aimed to discover potent antileukemic compounds targeting Mcl-1. We selected diverse molecules from the BindingDB database to construct a structure-based pharmacophore model, which facilitated the virtual screening of 407,270 compounds from the COCONUT database. An e-pharmacophore model was developed using the co-crystallized inhibitor, followed by QSAR modeling to estimate IC50 values and filter compounds with predicted values below the median. The top hits underwent molecular docking and MMGBSA binding energy calculations against Mcl-1, resulting in the selection of two promising candidates for further ADMET analysis. DFT calculations assessed their electronic properties, confirming favorable reactivity profiles of the screened compounds. Predictions for physicochemical and ADMET properties aligned with expected bioactivity and safety. Molecular dynamics simulations further validated their strong binding affinity and stability, positioning them as potential Mcl-1 inhibitors. Our comprehensive computational approach highlights these compounds as promising antileukemic agents, with future in vivo and in vitro validation recommended for further confirmation.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
8
Всего цитирований:
8
Цитирований c 0:
0
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Das U. et al. Discovery of Natural MCL1 Inhibitors using Pharmacophore modelling, QSAR, Docking, ADMET, Molecular Dynamics, and DFT Analysis // Computational Biology and Chemistry. 2025. Vol. 117. p. 108427.
ГОСТ со всеми авторами (до 50)
Скопировать
Das U., Chanda T., Kumar J., Peter A. Discovery of Natural MCL1 Inhibitors using Pharmacophore modelling, QSAR, Docking, ADMET, Molecular Dynamics, and DFT Analysis // Computational Biology and Chemistry. 2025. Vol. 117. p. 108427.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1016/j.compbiolchem.2025.108427
UR - https://linkinghub.elsevier.com/retrieve/pii/S1476927125000878
TI - Discovery of Natural MCL1 Inhibitors using Pharmacophore modelling, QSAR, Docking, ADMET, Molecular Dynamics, and DFT Analysis
T2 - Computational Biology and Chemistry
AU - Das, Uddalak
AU - Chanda, Tathagata
AU - Kumar, Jitendra
AU - Peter, Anitha
PY - 2025
DA - 2025/08/01
PB - Elsevier
SP - 108427
VL - 117
SN - 1476-9271
SN - 1476-928X
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2025_Das,
author = {Uddalak Das and Tathagata Chanda and Jitendra Kumar and Anitha Peter},
title = {Discovery of Natural MCL1 Inhibitors using Pharmacophore modelling, QSAR, Docking, ADMET, Molecular Dynamics, and DFT Analysis},
journal = {Computational Biology and Chemistry},
year = {2025},
volume = {117},
publisher = {Elsevier},
month = {aug},
url = {https://linkinghub.elsevier.com/retrieve/pii/S1476927125000878},
pages = {108427},
doi = {10.1016/j.compbiolchem.2025.108427}
}