What predicts student satisfaction with MOOCs: A gradient boosting trees supervised machine learning and sentiment analysis approach
Тип публикации: Journal Article
Дата публикации: 2020-02-01
scimago Q1
wos Q1
БС1
SJR: 3.343
CiteScore: 23.7
Impact factor: 10.5
ISSN: 03601315, 1873782X
General Computer Science
Education
Краткое описание
This study defines MOOC success as the extent of student satisfaction with the course. Having more satisfied MOOC students can extend the reach of an institution to more people, build the brand name of the institution, and even help the institution use MOOCs as a source of revenue. Traditionally, student completion rate is frequently used to define MOOC success, which however, is often inaccurate because many students have no intention of finishing a MOOC. Informed by Moore's theory of transactional distance, this study adopted supervised machine learning algorithm, sentiment analysis and hierarchical linear modelling to analyze the course features of 249 randomly sampled MOOCs and 6393 students' perceptions of these MOOCs. The results showed that course instructor, content, assessment, and schedule play significant roles in explaining student satisfaction, while course structure, major, duration, video, interaction, perceived course workload and perceived difficulty play no significant roles. This study adds to the extant literature by examining specific learner-level and course-level factors that can predict MOOC learner satisfaction and estimating their relative effects. Implications for MOOC instructors and practitioners are also provided. • Examines learner-level and course-level factors that can predict MOOC learner satisfaction. • Examines 249 randomly sampled MOOCs, comprising 6393 students. • Course instructor, content, assessment, and schedule significantly predict student satisfaction. • Course major, duration, perceived workload and perceived difficulty play no significant roles.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
5
10
15
20
|
|
|
Education and Information Technologies
20 публикаций, 8.16%
|
|
|
Sustainability
10 публикаций, 4.08%
|
|
|
Frontiers in Psychology
9 публикаций, 3.67%
|
|
|
Computers and Education
9 публикаций, 3.67%
|
|
|
IEEE Access
9 публикаций, 3.67%
|
|
|
Lecture Notes in Computer Science
7 публикаций, 2.86%
|
|
|
Lecture Notes in Networks and Systems
7 публикаций, 2.86%
|
|
|
Interactive Learning Environments
5 публикаций, 2.04%
|
|
|
Applied Sciences (Switzerland)
4 публикации, 1.63%
|
|
|
Information (Switzerland)
4 публикации, 1.63%
|
|
|
International Journal of Human-Computer Interaction
4 публикации, 1.63%
|
|
|
International Journal of Educational Technology in Higher Education
3 публикации, 1.22%
|
|
|
IEEE Transactions on Learning Technologies
3 публикации, 1.22%
|
|
|
Communications in Computer and Information Science
3 публикации, 1.22%
|
|
|
International Journal of Artificial Intelligence in Education
3 публикации, 1.22%
|
|
|
Journal of Organizational and End User Computing
2 публикации, 0.82%
|
|
|
Journal of Computer Assisted Learning
2 публикации, 0.82%
|
|
|
BMC Medical Education
2 публикации, 0.82%
|
|
|
Journal of Computing in Higher Education
2 публикации, 0.82%
|
|
|
Arabian Journal for Science and Engineering
2 публикации, 0.82%
|
|
|
Expert Systems with Applications
2 публикации, 0.82%
|
|
|
Nurse Education Today
2 публикации, 0.82%
|
|
|
British Journal of Educational Technology
2 публикации, 0.82%
|
|
|
Education Sciences
2 публикации, 0.82%
|
|
|
Behaviour and Information Technology
2 публикации, 0.82%
|
|
|
Scientific Programming
2 публикации, 0.82%
|
|
|
Advances in Intelligent Systems and Computing
2 публикации, 0.82%
|
|
|
Heliyon
2 публикации, 0.82%
|
|
|
AIP Conference Proceedings
2 публикации, 0.82%
|
|
|
5
10
15
20
|
Издатели
|
10
20
30
40
50
60
70
80
|
|
|
Springer Nature
75 публикаций, 30.61%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
40 публикаций, 16.33%
|
|
|
Elsevier
28 публикаций, 11.43%
|
|
|
MDPI
27 публикаций, 11.02%
|
|
|
Taylor & Francis
15 публикаций, 6.12%
|
|
|
Frontiers Media S.A.
13 публикаций, 5.31%
|
|
|
IGI Global
8 публикаций, 3.27%
|
|
|
Wiley
8 публикаций, 3.27%
|
|
|
Emerald
6 публикаций, 2.45%
|
|
|
Association for Computing Machinery (ACM)
4 публикации, 1.63%
|
|
|
Hindawi Limited
3 публикации, 1.22%
|
|
|
SAGE
2 публикации, 0.82%
|
|
|
Hans Publishers
2 публикации, 0.82%
|
|
|
AIP Publishing
2 публикации, 0.82%
|
|
|
Research Square Platform LLC
2 публикации, 0.82%
|
|
|
American Society of Civil Engineers (ASCE)
1 публикация, 0.41%
|
|
|
EDP Sciences
1 публикация, 0.41%
|
|
|
PeerJ
1 публикация, 0.41%
|
|
|
Oxford Brookes University
1 публикация, 0.41%
|
|
|
Bryansk State Technical University BSTU
1 публикация, 0.41%
|
|
|
Walter de Gruyter
1 публикация, 0.41%
|
|
|
Publishing House Science
1 публикация, 0.41%
|
|
|
Public Library of Science (PLoS)
1 публикация, 0.41%
|
|
|
F1000 Research
1 публикация, 0.41%
|
|
|
10
20
30
40
50
60
70
80
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
246
Всего цитирований:
246
Цитирований c 2024:
91
(37.14%)
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Hew K. F. et al. What predicts student satisfaction with MOOCs: A gradient boosting trees supervised machine learning and sentiment analysis approach // Computers and Education. 2020. Vol. 145. p. 103724.
ГОСТ со всеми авторами (до 50)
Скопировать
Hew K. F., Zhao Q., Qiao C., Tang Y. What predicts student satisfaction with MOOCs: A gradient boosting trees supervised machine learning and sentiment analysis approach // Computers and Education. 2020. Vol. 145. p. 103724.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1016/j.compedu.2019.103724
UR - https://doi.org/10.1016/j.compedu.2019.103724
TI - What predicts student satisfaction with MOOCs: A gradient boosting trees supervised machine learning and sentiment analysis approach
T2 - Computers and Education
AU - Hew, Khe Foon
AU - Zhao, Q
AU - Qiao, Chen
AU - Tang, Ying
PY - 2020
DA - 2020/02/01
PB - Elsevier
SP - 103724
VL - 145
SN - 0360-1315
SN - 1873-782X
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2020_Hew,
author = {Khe Foon Hew and Q Zhao and Chen Qiao and Ying Tang},
title = {What predicts student satisfaction with MOOCs: A gradient boosting trees supervised machine learning and sentiment analysis approach},
journal = {Computers and Education},
year = {2020},
volume = {145},
publisher = {Elsevier},
month = {feb},
url = {https://doi.org/10.1016/j.compedu.2019.103724},
pages = {103724},
doi = {10.1016/j.compedu.2019.103724}
}