том 39 страницы 100357

Ensemble learning for intrusion detection systems: A systematic mapping study and cross-benchmark evaluation

Тип публикацииJournal Article
Дата публикации2021-02-01
scimago Q1
wos Q1
БС1
SJR3.276
CiteScore38.4
Impact factor12.7
ISSN15740137, 18767745
Theoretical Computer Science
General Computer Science
Краткое описание
Intrusion detection systems (IDSs) are intrinsically linked to a comprehensive solution of cyberattacks prevention instruments. To achieve a higher detection rate, the ability to design an improved detection framework is sought after, particularly when utilizing ensemble learners. Designing an ensemble often lies in two main challenges such as the choice of available base classifiers and combiner methods. This paper performs an overview of how ensemble learners are exploited in IDSs by means of systematic mapping study. We collected and analyzed 124 prominent publications from the existing literature. The selected publications were then mapped into several categories such as years of publications, publication venues, datasets used, ensemble methods, and IDS techniques. Furthermore, this study reports and analyzes an empirical investigation of a new classifier ensemble approach, called stack of ensemble (SoE) for anomaly-based IDS. The SoE is an ensemble classifier that adopts parallel architecture to combine three individual ensemble learners such as random forest, gradient boosting machine, and extreme gradient boosting machine in a homogeneous manner. The performance significance among classification algorithms is statistically examined in terms of their Matthews correlation coefficients, accuracies, false positive rates, and area under ROC curve metrics. Our study fills the gap in current literature concerning an up-to-date systematic mapping study, not to mention an extensive empirical evaluation of the recent advances of ensemble learning techniques applied to IDSs.
Найдено 
Найдено 

Топ-30

Журналы

2
4
6
8
10
IEEE Access
10 публикаций, 7.94%
Lecture Notes in Networks and Systems
4 публикации, 3.17%
Big Data and Cognitive Computing
3 публикации, 2.38%
Wireless Personal Communications
3 публикации, 2.38%
Expert Systems with Applications
3 публикации, 2.38%
Applied Sciences (Switzerland)
3 публикации, 2.38%
Sensors
3 публикации, 2.38%
PeerJ Computer Science
2 публикации, 1.59%
Sustainability
2 публикации, 1.59%
Electronics (Switzerland)
2 публикации, 1.59%
Computers, Materials and Continua
2 публикации, 1.59%
Scientific Reports
2 публикации, 1.59%
Computers and Security
2 публикации, 1.59%
Journal of Big Data
2 публикации, 1.59%
Lecture Notes in Computer Science
2 публикации, 1.59%
Lecture Notes in Electrical Engineering
2 публикации, 1.59%
Knowledge-Based Systems
2 публикации, 1.59%
Engineering Applications of Artificial Intelligence
2 публикации, 1.59%
Communications in Computer and Information Science
2 публикации, 1.59%
Journal of Supercomputing
2 публикации, 1.59%
AIP Conference Proceedings
2 публикации, 1.59%
Journal of Intelligent and Fuzzy Systems
1 публикация, 0.79%
Seismological Research Letters
1 публикация, 0.79%
Processes
1 публикация, 0.79%
Archives of Computational Methods in Engineering
1 публикация, 0.79%
Microprocessors and Microsystems
1 публикация, 0.79%
Digital Chemical Engineering
1 публикация, 0.79%
International Journal of Critical Infrastructure Protection
1 публикация, 0.79%
Journal of King Saud University - Computer and Information Sciences
1 публикация, 0.79%
2
4
6
8
10

Издатели

5
10
15
20
25
30
35
Institute of Electrical and Electronics Engineers (IEEE)
31 публикация, 24.6%
Springer Nature
30 публикаций, 23.81%
Elsevier
23 публикации, 18.25%
MDPI
19 публикаций, 15.08%
Wiley
3 публикации, 2.38%
PeerJ
2 публикации, 1.59%
Tech Science Press
2 публикации, 1.59%
Hindawi Limited
2 публикации, 1.59%
Taylor & Francis
2 публикации, 1.59%
AIP Publishing
2 публикации, 1.59%
SAGE
1 публикация, 0.79%
Seismological Society of America (SSA)
1 публикация, 0.79%
King Saud University
1 публикация, 0.79%
Valahia University of Targoviste - Journal of Science and Arts
1 публикация, 0.79%
Public Library of Science (PLoS)
1 публикация, 0.79%
World Scientific and Engineering Academy and Society (WSEAS)
1 публикация, 0.79%
Oxford University Press
1 публикация, 0.79%
EDP Sciences
1 публикация, 0.79%
IOP Publishing
1 публикация, 0.79%
Emerald
1 публикация, 0.79%
5
10
15
20
25
30
35
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
126
Поделиться
Цитировать
ГОСТ |
Цитировать
Tama B. A., Lim S. Ensemble learning for intrusion detection systems: A systematic mapping study and cross-benchmark evaluation // Computer Science Review. 2021. Vol. 39. p. 100357.
ГОСТ со всеми авторами (до 50) Скопировать
Tama B. A., Lim S. Ensemble learning for intrusion detection systems: A systematic mapping study and cross-benchmark evaluation // Computer Science Review. 2021. Vol. 39. p. 100357.
RIS |
Цитировать
TY - JOUR
DO - 10.1016/j.cosrev.2020.100357
UR - https://doi.org/10.1016/j.cosrev.2020.100357
TI - Ensemble learning for intrusion detection systems: A systematic mapping study and cross-benchmark evaluation
T2 - Computer Science Review
AU - Tama, Bayu Adhi
AU - Lim, Sunghoon
PY - 2021
DA - 2021/02/01
PB - Elsevier
SP - 100357
VL - 39
SN - 1574-0137
SN - 1876-7745
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2021_Tama,
author = {Bayu Adhi Tama and Sunghoon Lim},
title = {Ensemble learning for intrusion detection systems: A systematic mapping study and cross-benchmark evaluation},
journal = {Computer Science Review},
year = {2021},
volume = {39},
publisher = {Elsevier},
month = {feb},
url = {https://doi.org/10.1016/j.cosrev.2020.100357},
pages = {100357},
doi = {10.1016/j.cosrev.2020.100357}
}