Open Access
Open access
volume 12 pages 100172

Predicting soot formation in fossil fuels: A comparative study of regression and machine learning models

Ridhwan Lawal
Wasif Farooq
Abdulazeez Abdulraheem
Abdul Gani Abdul Jameel
Publication typeJournal Article
Publication date2024-09-01
scimago Q1
wos Q2
SJR0.706
CiteScore6.0
Impact factor4.1
ISSN27725081
Found 
Found 

Top-30

Journals

1
2
Arabian Journal for Science and Engineering
2 publications, 50%
Green Chemical Engineering
1 publication, 25%
Fuel
1 publication, 25%
1
2

Publishers

1
2
Elsevier
2 publications, 50%
Springer Nature
2 publications, 50%
1
2
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
4
Share
Cite this
GOST |
Cite this
GOST Copy
Lawal R. et al. Predicting soot formation in fossil fuels: A comparative study of regression and machine learning models // Digital Chemical Engineering. 2024. Vol. 12. p. 100172.
GOST all authors (up to 50) Copy
Lawal R., Farooq W., Abdulraheem A., Abdul Jameel A. G. Predicting soot formation in fossil fuels: A comparative study of regression and machine learning models // Digital Chemical Engineering. 2024. Vol. 12. p. 100172.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1016/j.dche.2024.100172
UR - https://linkinghub.elsevier.com/retrieve/pii/S2772508124000346
TI - Predicting soot formation in fossil fuels: A comparative study of regression and machine learning models
T2 - Digital Chemical Engineering
AU - Lawal, Ridhwan
AU - Farooq, Wasif
AU - Abdulraheem, Abdulazeez
AU - Abdul Jameel, Abdul Gani
PY - 2024
DA - 2024/09/01
PB - Elsevier
SP - 100172
VL - 12
SN - 2772-5081
ER -
BibTex
Cite this
BibTex (up to 50 authors) Copy
@article{2024_Lawal,
author = {Ridhwan Lawal and Wasif Farooq and Abdulazeez Abdulraheem and Abdul Gani Abdul Jameel},
title = {Predicting soot formation in fossil fuels: A comparative study of regression and machine learning models},
journal = {Digital Chemical Engineering},
year = {2024},
volume = {12},
publisher = {Elsevier},
month = {sep},
url = {https://linkinghub.elsevier.com/retrieve/pii/S2772508124000346},
pages = {100172},
doi = {10.1016/j.dche.2024.100172}
}