Open Access
Data in Brief, volume 53, pages 110131
A Pothole Video Dataset for Semantic Segmentation
Muhammad Ihsan
1
,
Muhammad Alfian Amrizal
1
,
Agus Harjoko
1
Publication type: Journal Article
Publication date: 2024-04-01
Multidisciplinary
Abstract
This paper introduces a video dataset for semantic segmentation of road potholes. This dataset contains 619 high-resolution videos captured in January 2023, covering locations in eight villages within the Hulu Sungai Tengah regency of South Kalimantan, Indonesia. The dataset is divided into three main folders, namely train, val, and test. The train, val, and test folders contain 372 videos for training, 124 videos for validation, and 123 videos for testing, respectively. Each of these main folders has two subfolders, ``RGB'' for the video in the RGB format and ``mask'' for the ground truth segmentation. These videos are precisely two seconds long, containing 48 frames each, and all are in MP4 format. The dataset offers remarkable flexibility, accommodating various research needs, from full-video segmentation to frame extraction. It enables researchers to create ground truth annotations and change the combination of videos in the folders according to their needs. This resource is an asset for researchers, engineers, policymakers, and anyone interested in advancing algorithms for pothole detection and analysis. This dataset allows for benchmarking semantic segmentation algorithms, conducting comparative studies on pothole detection methods, and exploring innovative approaches, offering valuable contributions to the computer vision community.
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.