Deep learning-based 3D point cloud classification: A systematic survey and outlook
Huang Zhang
1
,
Changshuo Wang
2, 3, 4, 5
,
Shengwei Tian
1
,
Baoli Lu
2, 5, 6
,
Liping Zhang
2, 4, 5
,
Xin Ning
4, 5
,
Xue Bai
7
2
Beijing Key Laboratory of Semiconductor Neural Network Intelligent Sensing and Computing Technology, Beijing 100083, China
|
4
Cognitive Computing Technology Joint Laboratory, Wave Group, Beijing 102208, China
|
7
School of Computer Science and Engineering, State Key Laboratory of Software Development Environment, Jiangxi Research Institute, Beijing 100191, China
|
Тип публикации: Journal Article
Дата публикации: 2023-09-01
scimago Q2
wos Q2
БС1
SJR: 0.665
CiteScore: 6.1
Impact factor: 3.4
ISSN: 01419382, 18727387
Electrical and Electronic Engineering
Hardware and Architecture
Human-Computer Interaction
Краткое описание
In recent years, point cloud representation has become one of the research hotspots in the field of computer vision, and has been widely used in many fields, such as autonomous driving, virtual reality, robotics, etc. Although deep learning techniques have achieved great success in processing regular structured 2D grid image data, there are still great challenges in processing irregular, unstructured point cloud data. Point cloud classification is the basis of point cloud analysis, and many deep learning-based methods have been widely used in this task. Therefore, the purpose of this paper is to provide researchers in this field with the latest research progress and future trends. First, we introduce point cloud acquisition, characteristics, and challenges. Second, we review 3D data representations, storage formats, and commonly used datasets for point cloud classification. We then summarize deep learning-based methods for point cloud classification and complement recent research work. Next, we compare and analyze the performance of the main methods. Finally, we discuss some challenges and future directions for point cloud classification.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
1 цитирование
Лукас Жуан
5 публикаций,
64 цитирования
Индекс Хирша: 4
Топ-30
Журналы
|
1
2
3
4
5
6
7
8
|
|
|
Journal of Organizational and End User Computing
8 публикаций, 6.02%
|
|
|
IEEE Access
8 публикаций, 6.02%
|
|
|
Lecture Notes in Computer Science
6 публикаций, 4.51%
|
|
|
Displays
5 публикаций, 3.76%
|
|
|
Image and Vision Computing
5 публикаций, 3.76%
|
|
|
AEJ - Alexandria Engineering Journal
5 публикаций, 3.76%
|
|
|
Sensors
4 публикации, 3.01%
|
|
|
Remote Sensing
3 публикации, 2.26%
|
|
|
Information Fusion
3 публикации, 2.26%
|
|
|
Neural Networks
3 публикации, 2.26%
|
|
|
International Journal of Applied Earth Observation and Geoinformation
3 публикации, 2.26%
|
|
|
Expert Systems with Applications
3 публикации, 2.26%
|
|
|
Visual Computer
2 публикации, 1.5%
|
|
|
Applied Sciences (Switzerland)
2 публикации, 1.5%
|
|
|
Electronics (Switzerland)
2 публикации, 1.5%
|
|
|
Computers and Graphics
2 публикации, 1.5%
|
|
|
Measurement: Journal of the International Measurement Confederation
2 публикации, 1.5%
|
|
|
PLoS ONE
2 публикации, 1.5%
|
|
|
Journal of Supercomputing
2 публикации, 1.5%
|
|
|
WSEAS Transactions on Power Systems
1 публикация, 0.75%
|
|
|
FinTech
1 публикация, 0.75%
|
|
|
Remote Sensing of Environment
1 публикация, 0.75%
|
|
|
Multimedia Tools and Applications
1 публикация, 0.75%
|
|
|
Geo-Spatial Information Science
1 публикация, 0.75%
|
|
|
Frontiers in Environmental Science
1 публикация, 0.75%
|
|
|
Tunnelling and Underground Space Technology
1 публикация, 0.75%
|
|
|
Neurocomputing
1 публикация, 0.75%
|
|
|
Science Progress
1 публикация, 0.75%
|
|
|
Advanced Intelligent Systems
1 публикация, 0.75%
|
|
|
1
2
3
4
5
6
7
8
|
Издатели
|
5
10
15
20
25
30
35
40
45
|
|
|
Elsevier
45 публикаций, 33.83%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
29 публикаций, 21.8%
|
|
|
Springer Nature
20 публикаций, 15.04%
|
|
|
MDPI
15 публикаций, 11.28%
|
|
|
IGI Global
8 публикаций, 6.02%
|
|
|
Taylor & Francis
3 публикации, 2.26%
|
|
|
Frontiers Media S.A.
2 публикации, 1.5%
|
|
|
SAGE
2 публикации, 1.5%
|
|
|
Wiley
2 публикации, 1.5%
|
|
|
Public Library of Science (PLoS)
2 публикации, 1.5%
|
|
|
World Scientific and Engineering Academy and Society (WSEAS)
1 публикация, 0.75%
|
|
|
IOP Publishing
1 публикация, 0.75%
|
|
|
Oxford University Press
1 публикация, 0.75%
|
|
|
Hindawi Limited
1 публикация, 0.75%
|
|
|
ASME International
1 публикация, 0.75%
|
|
|
5
10
15
20
25
30
35
40
45
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
133
Всего цитирований:
133
Цитирований c 2024:
119
(89.47%)
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Zhang H. et al. Deep learning-based 3D point cloud classification: A systematic survey and outlook // Displays. 2023. Vol. 79. p. 102456.
ГОСТ со всеми авторами (до 50)
Скопировать
Zhang H., Wang C., Tian S., Lu B., Zhang L., Ning X., Bai X. Deep learning-based 3D point cloud classification: A systematic survey and outlook // Displays. 2023. Vol. 79. p. 102456.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1016/j.displa.2023.102456
UR - https://doi.org/10.1016/j.displa.2023.102456
TI - Deep learning-based 3D point cloud classification: A systematic survey and outlook
T2 - Displays
AU - Zhang, Huang
AU - Wang, Changshuo
AU - Tian, Shengwei
AU - Lu, Baoli
AU - Zhang, Liping
AU - Ning, Xin
AU - Bai, Xue
PY - 2023
DA - 2023/09/01
PB - Elsevier
SP - 102456
VL - 79
SN - 0141-9382
SN - 1872-7387
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2023_Zhang,
author = {Huang Zhang and Changshuo Wang and Shengwei Tian and Baoli Lu and Liping Zhang and Xin Ning and Xue Bai},
title = {Deep learning-based 3D point cloud classification: A systematic survey and outlook},
journal = {Displays},
year = {2023},
volume = {79},
publisher = {Elsevier},
month = {sep},
url = {https://doi.org/10.1016/j.displa.2023.102456},
pages = {102456},
doi = {10.1016/j.displa.2023.102456}
}