Open Access
Open access
том 8 страницы 1219-1229

A novel detection method for hot spots of photovoltaic (PV) panels using improved anchors and prediction heads of YOLOv5 network

Tianyi Sun 1
Huishuang Xing 1
Shengxian Cao 1
Yanhui Zhang 2
Siyuan Fan 1
Peng Liu 1
Тип публикацииJournal Article
Дата публикации2022-11-01
scimago Q1
wos Q2
БС1
SJR1.172
CiteScore11.7
Impact factor5.1
ISSN23524847
General Energy
Краткое описание
Accurate classification and detection of hot spots of photovoltaic (PV) panels can help guide operation and maintenance decisions, improve the power generation efficiency of the PV system, and ensure power stations’ safe and stable operation. Considering that, in this paper, the hot spots of PV panels collected on site are taken as the research object, and their formation mechanism is studied. Based on this, the morphological characteristics possessed by the hot spots of PV panels are classified into circular, linear, and array ones. A novel method for detecting hot spots of PV panels based on improved anchors and prediction heads of the YOLOv5 (AP-YOLOv5) network is proposed. Besides, to improve the detection precision of the YOLOv5 network at different scales in hot spots of PV panels, the K-means clustering algorithm is employed to cluster the length–width ratio of the data annotation frame, and a group of the anchors with smaller values is added so as to realize the detection of small targets by optimizing the cluster number. Apart from that, the corresponding prediction heads are constructed for the new anchor parameters to improve the detection precision concerning hot spots of PV panels. Furthermore, the model is verified by training experimental data and comparing test set results. The results showed that compared with other one-stage object detection models, the mean average precision (mAP) of the proposed network can achieve 87.8%, while the average recall rate is 89.0%, and the F1 score reaches 88.9%. In addition, the precision of this model is better than that of other models while maintaining a high frame rate; the frames per second (FPS) is as high as 98.6, thus laying a foundation for developing rapid detection tool of hot spots of PV panels, improving the safety of power station operation, and providing a method for intelligent operation and maintenance of PV power stations.
Найдено 
Найдено 

Топ-30

Журналы

1
2
3
IEEE Access
3 публикации, 8.82%
Energies
1 публикация, 2.94%
Energy Reports
1 публикация, 2.94%
Machines
1 публикация, 2.94%
Applied Sciences (Switzerland)
1 публикация, 2.94%
Journal of Computational Methods in Sciences and Engineering
1 публикация, 2.94%
Electronics Letters
1 публикация, 2.94%
Energy
1 публикация, 2.94%
Measurement Science and Technology
1 публикация, 2.94%
International Journal of Image and Data Fusion
1 публикация, 2.94%
Lecture Notes in Mechanical Engineering
1 публикация, 2.94%
Frontiers in Plant Science
1 публикация, 2.94%
IEEE Transactions on Geoscience and Remote Sensing
1 публикация, 2.94%
Digital Signal Processing: A Review Journal
1 публикация, 2.94%
Solar Energy
1 публикация, 2.94%
Sustainable Energy Technologies and Assessments
1 публикация, 2.94%
Applied Thermal Engineering
1 публикация, 2.94%
IEEE Transactions on Instrumentation and Measurement
1 публикация, 2.94%
Measurement: Journal of the International Measurement Confederation
1 публикация, 2.94%
Innovative Infrastructure Solutions
1 публикация, 2.94%
Infrared Physics and Technology
1 публикация, 2.94%
Cureus Journals
1 публикация, 2.94%
IFAC-PapersOnLine
1 публикация, 2.94%
1
2
3

Издатели

2
4
6
8
10
12
14
Institute of Electrical and Electronics Engineers (IEEE)
13 публикаций, 38.24%
Elsevier
9 публикаций, 26.47%
MDPI
3 публикации, 8.82%
Springer Nature
3 публикации, 8.82%
SAGE
1 публикация, 2.94%
Institution of Engineering and Technology (IET)
1 публикация, 2.94%
IOP Publishing
1 публикация, 2.94%
Taylor & Francis
1 публикация, 2.94%
Frontiers Media S.A.
1 публикация, 2.94%
2
4
6
8
10
12
14
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
34
Поделиться
Цитировать
ГОСТ |
Цитировать
Sun T. et al. A novel detection method for hot spots of photovoltaic (PV) panels using improved anchors and prediction heads of YOLOv5 network // Energy Reports. 2022. Vol. 8. pp. 1219-1229.
ГОСТ со всеми авторами (до 50) Скопировать
Sun T., Xing H., Cao S., Zhang Y., Fan S., Liu P. A novel detection method for hot spots of photovoltaic (PV) panels using improved anchors and prediction heads of YOLOv5 network // Energy Reports. 2022. Vol. 8. pp. 1219-1229.
RIS |
Цитировать
TY - JOUR
DO - 10.1016/j.egyr.2022.08.130
UR - https://doi.org/10.1016/j.egyr.2022.08.130
TI - A novel detection method for hot spots of photovoltaic (PV) panels using improved anchors and prediction heads of YOLOv5 network
T2 - Energy Reports
AU - Sun, Tianyi
AU - Xing, Huishuang
AU - Cao, Shengxian
AU - Zhang, Yanhui
AU - Fan, Siyuan
AU - Liu, Peng
PY - 2022
DA - 2022/11/01
PB - Elsevier
SP - 1219-1229
VL - 8
SN - 2352-4847
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2022_Sun,
author = {Tianyi Sun and Huishuang Xing and Shengxian Cao and Yanhui Zhang and Siyuan Fan and Peng Liu},
title = {A novel detection method for hot spots of photovoltaic (PV) panels using improved anchors and prediction heads of YOLOv5 network},
journal = {Energy Reports},
year = {2022},
volume = {8},
publisher = {Elsevier},
month = {nov},
url = {https://doi.org/10.1016/j.egyr.2022.08.130},
pages = {1219--1229},
doi = {10.1016/j.egyr.2022.08.130}
}