Short-term district power load self-prediction based on improved XGBoost model
2
Engineering Research Center of Intelligent Computing for Complex Energy Systems Ministry of Education, Baoding 071003, China
|
Тип публикации: Journal Article
Дата публикации: 2023-11-01
scimago Q1
wos Q1
БС1
SJR: 1.652
CiteScore: 9.5
Impact factor: 8.0
ISSN: 09521976, 18736769
Electrical and Electronic Engineering
Artificial Intelligence
Control and Systems Engineering
Краткое описание
Distributed generation and diversified loads increase the uncertainty of district power prediction. Useful prediction requires a highly accurate model, and there are several challenges facing the designers of a new power system with intelligent power distribution. To solve them, we improved an XGBoost model from three aspects: model, data, and performance. This paper proposes an XGBoost model with a windowed mechanism and random grid search (WR-XGBoost model) for self-prediction of short-term district power load. Specifically, a causal sliding window with different strides is introduced into the model optimization stage to process the training and test sets separately. In data optimization, the model initially processes the data organized in forms and then uses discrete difference data as input. Finally, in optimizing the performance, a random grid search method reduces the debugging of hyperparameters. The results show that the WR-XGBoost model outperforms five comparison models in terms of predictive power and generalization, using four datasets and seven statistical indicators.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
3
|
|
|
Sustainability
3 публикации, 6.52%
|
|
|
Energy
2 публикации, 4.35%
|
|
|
Energy Conversion and Management
1 публикация, 2.17%
|
|
|
SAE International Journal of Aerospace
1 публикация, 2.17%
|
|
|
Environmental Research
1 публикация, 2.17%
|
|
|
IEEE Transactions on Instrumentation and Measurement
1 публикация, 2.17%
|
|
|
Nano Express
1 публикация, 2.17%
|
|
|
Machine Learning: Science and Technology
1 публикация, 2.17%
|
|
|
Applied Energy
1 публикация, 2.17%
|
|
|
IET Collaborative Intelligent Manufacturing
1 публикация, 2.17%
|
|
|
Superconductor Science and Technology
1 публикация, 2.17%
|
|
|
IEEE Transactions on Components, Packaging and Manufacturing Technology
1 публикация, 2.17%
|
|
|
Ore and Energy Resource Geology
1 публикация, 2.17%
|
|
|
Energy Reports
1 публикация, 2.17%
|
|
|
Asian Journal of Civil Engineering
1 публикация, 2.17%
|
|
|
Journal of Hydrology
1 публикация, 2.17%
|
|
|
Journal of Renewable and Sustainable Energy
1 публикация, 2.17%
|
|
|
Biomedical Signal Processing and Control
1 публикация, 2.17%
|
|
|
Optical Fiber Technology
1 публикация, 2.17%
|
|
|
Transportation Research, Part E: Logistics and Transportation Review
1 публикация, 2.17%
|
|
|
Cognitive Computation
1 публикация, 2.17%
|
|
|
Process Safety and Environmental Protection
1 публикация, 2.17%
|
|
|
Mathematics
1 публикация, 2.17%
|
|
|
Renewable Energy
1 публикация, 2.17%
|
|
|
Physica A: Statistical Mechanics and its Applications
1 публикация, 2.17%
|
|
|
Neural Computing and Applications
1 публикация, 2.17%
|
|
|
Remote Sensing
1 публикация, 2.17%
|
|
|
Expert Systems with Applications
1 публикация, 2.17%
|
|
|
Waste Management
1 публикация, 2.17%
|
|
|
1
2
3
|
Издатели
|
5
10
15
20
|
|
|
Elsevier
20 публикаций, 43.48%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
8 публикаций, 17.39%
|
|
|
MDPI
5 публикаций, 10.87%
|
|
|
Springer Nature
4 публикации, 8.7%
|
|
|
IOP Publishing
3 публикации, 6.52%
|
|
|
SAE International
1 публикация, 2.17%
|
|
|
Institution of Engineering and Technology (IET)
1 публикация, 2.17%
|
|
|
Research Square Platform LLC
1 публикация, 2.17%
|
|
|
AIP Publishing
1 публикация, 2.17%
|
|
|
Wiley
1 публикация, 2.17%
|
|
|
Taylor & Francis
1 публикация, 2.17%
|
|
|
5
10
15
20
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
46
Всего цитирований:
46
Цитирований c 2024:
44
(95.65%)
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Cao W. et al. Short-term district power load self-prediction based on improved XGBoost model // Engineering Applications of Artificial Intelligence. 2023. Vol. 126. p. 106826.
ГОСТ со всеми авторами (до 50)
Скопировать
Cao W., Liu Y., Mei H., Shang H., Yu Y. Short-term district power load self-prediction based on improved XGBoost model // Engineering Applications of Artificial Intelligence. 2023. Vol. 126. p. 106826.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1016/j.engappai.2023.106826
UR - https://doi.org/10.1016/j.engappai.2023.106826
TI - Short-term district power load self-prediction based on improved XGBoost model
T2 - Engineering Applications of Artificial Intelligence
AU - Cao, Wangbin
AU - Liu, Yanping
AU - Mei, Huawei
AU - Shang, Honglin
AU - Yu, Yang
PY - 2023
DA - 2023/11/01
PB - Elsevier
SP - 106826
VL - 126
SN - 0952-1976
SN - 1873-6769
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2023_Cao,
author = {Wangbin Cao and Yanping Liu and Huawei Mei and Honglin Shang and Yang Yu},
title = {Short-term district power load self-prediction based on improved XGBoost model},
journal = {Engineering Applications of Artificial Intelligence},
year = {2023},
volume = {126},
publisher = {Elsevier},
month = {nov},
url = {https://doi.org/10.1016/j.engappai.2023.106826},
pages = {106826},
doi = {10.1016/j.engappai.2023.106826}
}