Expert Systems with Applications, volume 145, pages 113116

TDR: Two-stage deep recommendation model based on mSDA and DNN

Rui-Qin Wang 1
Yunliang Jiang 2
Jungang Lou 1
2
 
Zhejiang Province Key Laborotory of SmartManagement & Application of Modern Agricultural Resources, Zhejiang, China
Publication typeJournal Article
Publication date2020-05-01
scimago Q1
SJR1.875
CiteScore13.8
Impact factor7.5
ISSN09574174, 18736793
Computer Science Applications
General Engineering
Artificial Intelligence
Abstract
Recently, deep learning techniques have been widely used in recommendation tasks and have attained record performance. However, the input quality of the deep learning model has a great influence on the recommendation performance. In this work, an efficient and effective input optimization method is proposed. Specifically, we propose an integrated recommendation framework based on two-stage deep learning. In the first stage, with user and item features as the original input, a low-cost marginalized stacked denoising auto-encoder (mSDA) model is used to learn the latent factors of users and items. In the second stage, the resulting latent factors are combined and used as input vector to the DNN model for fast and accurate prediction. Using the latent factor vector as the input to the deep learning-based recommendation model not only captures the high-order feature interaction, but also reduces the burden of the hidden layer, and also avoids the model training falling into local optimum. Extensive experiments with real-world datasets show that the proposed model shows much better performance than the state-of-the-art recommendation methods in terms of prediction accuracy, parameter space and training speed.
Found 
Found 

Top-30

Journals

1
2
3
4
1
2
3
4

Publishers

1
2
3
4
5
1
2
3
4
5
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex
Found error?