Open Access
Local detection of replay attacks and data anomalies on PMU measurements of smart power grids via tracking critical dynamic modes
Adib Barshan
1
,
Seyed Mohammad Ali Mohammadi
1
,
Farzaneh Abdollahi
2
,
Roohalamin Zeinali Davarani
3
,
Saeid Esmaeili
1
,
Saeid Esmaeili
1
2
Тип публикации: Journal Article
Дата публикации: 2024-08-01
scimago Q1
wos Q1
БС1
SJR: 1.714
CiteScore: 13.0
Impact factor: 5.0
ISSN: 01420615, 18793517
Краткое описание
This work proposes an approach based on critical dynamic modes to detect four types of phasor measurement unit (PMU) data anomalies in smart power grids. Smart power grids as modern power systems involve new information and communication technologies (ICTs), relying on real-time data, like data of PMUs. Due to the dependence of PMUs on communication technology, PMUs are prone to different data anomalies and false data injection attacks, such as replay attack, which has been rarely considered in previous works. Since detecting abnormal data is necessary for the proper function of the power system, most detection methods have been data-based approaches that may need a large amount of data and lead to more complexity. This paper proposes an online detection approach based on the minimum number of dynamic modes for the local detection of a replay attack and three types of bad data injection on PMU measurements. For this purpose, a distributed modeling of the power system is considered. Then, a replay attack and bad data injections are detected locally by tracking critical dynamic modes. The proposed approach can detect simultaneous data anomalies on more than one PMU. The effectiveness and accuracy of this approach are evaluated through simulations on the 10-machine New England 39-bus power system.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
|
|
|
Smart Grids and Sustainable Energy
1 публикация, 25%
|
|
|
International Journal of Critical Infrastructure Protection
1 публикация, 25%
|
|
|
Renewable and Sustainable Energy Reviews
1 публикация, 25%
|
|
|
Expert Systems with Applications
1 публикация, 25%
|
|
|
1
|
Издатели
|
1
2
3
|
|
|
Elsevier
3 публикации, 75%
|
|
|
Springer Nature
1 публикация, 25%
|
|
|
1
2
3
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
4
Всего цитирований:
4
Цитирований c 2024:
3
(75%)
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Barshan A. et al. Local detection of replay attacks and data anomalies on PMU measurements of smart power grids via tracking critical dynamic modes // International Journal of Electrical Power and Energy Systems. 2024. Vol. 159. p. 110038.
ГОСТ со всеми авторами (до 50)
Скопировать
Barshan A., Mohammadi S. M. A., Abdollahi F., Zeinali Davarani R., Esmaeili S., Esmaeili S. Local detection of replay attacks and data anomalies on PMU measurements of smart power grids via tracking critical dynamic modes // International Journal of Electrical Power and Energy Systems. 2024. Vol. 159. p. 110038.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1016/j.ijepes.2024.110038
UR - https://linkinghub.elsevier.com/retrieve/pii/S014206152400259X
TI - Local detection of replay attacks and data anomalies on PMU measurements of smart power grids via tracking critical dynamic modes
T2 - International Journal of Electrical Power and Energy Systems
AU - Barshan, Adib
AU - Mohammadi, Seyed Mohammad Ali
AU - Abdollahi, Farzaneh
AU - Zeinali Davarani, Roohalamin
AU - Esmaeili, Saeid
AU - Esmaeili, Saeid
PY - 2024
DA - 2024/08/01
PB - Elsevier
SP - 110038
VL - 159
SN - 0142-0615
SN - 1879-3517
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2024_Barshan,
author = {Adib Barshan and Seyed Mohammad Ali Mohammadi and Farzaneh Abdollahi and Roohalamin Zeinali Davarani and Saeid Esmaeili and Saeid Esmaeili},
title = {Local detection of replay attacks and data anomalies on PMU measurements of smart power grids via tracking critical dynamic modes},
journal = {International Journal of Electrical Power and Energy Systems},
year = {2024},
volume = {159},
publisher = {Elsevier},
month = {aug},
url = {https://linkinghub.elsevier.com/retrieve/pii/S014206152400259X},
pages = {110038},
doi = {10.1016/j.ijepes.2024.110038}
}