том 145 страницы 423-442

Adaptive terminal synergetic-backstepping technique based machine learning regression algorithm for MPPT control of PV systems under real climatic conditions

Jean de Dieu Nguimfack Ndongmo 1, 2
Ambe Harrison 3
Njimboh Henry Alombah 4
René Kuate-Fochie 2
Derek Ajesam Asoh 1, 5
Godpromesse Kenné 2
Тип публикацииJournal Article
Дата публикации2024-02-01
scimago Q1
wos Q1
БС1
SJR1.552
CiteScore12.3
Impact factor6.5
ISSN00190578, 18792022
Computer Science Applications
Electrical and Electronic Engineering
Instrumentation
Applied Mathematics
Control and Systems Engineering
Краткое описание
This paper deals with a comparative evaluation of nonlinear controllers based on the linear regression technique, which is a machine learning algorithm for maximum power point tracking. In the past decade, most photovoltaic systems have been equipped with classical algorithms such as perturb and observe, hill climbing, and incremental conductance. The simplicity of these techniques and their ease of implementation were seen as the main reasons for their utilization in photovoltaic systems. However, researchers’ attention has recently been attracted by artificial intelligence-based techniques such as linear regression, which offer better performance within the bounds of the nonlinearity of photovoltaic system characteristics. An adaptive terminal synergetic backstepping controller is developed in this paper for a single-ended primary inductance converter. This control scheme is based on the combination of a non-singular terminal synergetic technique with an integral backstepping technique and equally a neural network for the approximation of unmeasured or inaccessible variables that guarantees the finite-time convergence. The proposed controller was further verified under virtual and real environmental conditions, and the numerical results obtained from Matlab/Simulink software under various test conditions, including load variations, show that the adaptive terminal synergetic backstepping controller gives satisfactory performance compared to the adaptive integral backstepping controller used in the same climatic conditions.
Найдено 
Найдено 

Топ-30

Журналы

1
2
3
Scientific Reports
3 публикации, 13.04%
Energies
2 публикации, 8.7%
Electrical Engineering
2 публикации, 8.7%
Engineering Reports
2 публикации, 8.7%
Control Engineering Practice
1 публикация, 4.35%
Renewable Energy Focus
1 публикация, 4.35%
Journal of Energy Storage
1 публикация, 4.35%
Computers and Electrical Engineering
1 публикация, 4.35%
e-Prime - Advances in Electrical Engineering Electronics and Energy
1 публикация, 4.35%
International Journal of Cognitive Computing in Engineering
1 публикация, 4.35%
Energy
1 публикация, 4.35%
International Journal of Dynamics and Control
1 публикация, 4.35%
ISA Transactions
1 публикация, 4.35%
Electric Power Systems Research
1 публикация, 4.35%
Pamukkale University Journal of Engineering Sciences
1 публикация, 4.35%
1
2
3

Издатели

1
2
3
4
5
6
7
8
9
Elsevier
9 публикаций, 39.13%
Springer Nature
6 публикаций, 26.09%
MDPI
4 публикации, 17.39%
Wiley
2 публикации, 8.7%
Pamukkale University
1 публикация, 4.35%
Institute of Electrical and Electronics Engineers (IEEE)
1 публикация, 4.35%
1
2
3
4
5
6
7
8
9
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
23
Поделиться
Цитировать
ГОСТ |
Цитировать
de Dieu Nguimfack Ndongmo J. et al. Adaptive terminal synergetic-backstepping technique based machine learning regression algorithm for MPPT control of PV systems under real climatic conditions // ISA Transactions. 2024. Vol. 145. pp. 423-442.
ГОСТ со всеми авторами (до 50) Скопировать
de Dieu Nguimfack Ndongmo J., Harrison A., Alombah N. H., Kuate-Fochie R., Ajesam Asoh D., Kenné G. Adaptive terminal synergetic-backstepping technique based machine learning regression algorithm for MPPT control of PV systems under real climatic conditions // ISA Transactions. 2024. Vol. 145. pp. 423-442.
RIS |
Цитировать
TY - JOUR
DO - 10.1016/j.isatra.2023.11.040
UR - https://doi.org/10.1016/j.isatra.2023.11.040
TI - Adaptive terminal synergetic-backstepping technique based machine learning regression algorithm for MPPT control of PV systems under real climatic conditions
T2 - ISA Transactions
AU - de Dieu Nguimfack Ndongmo, Jean
AU - Harrison, Ambe
AU - Alombah, Njimboh Henry
AU - Kuate-Fochie, René
AU - Ajesam Asoh, Derek
AU - Kenné, Godpromesse
PY - 2024
DA - 2024/02/01
PB - Elsevier
SP - 423-442
VL - 145
PMID - 38057172
SN - 0019-0578
SN - 1879-2022
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2024_de Dieu Nguimfack Ndongmo,
author = {Jean de Dieu Nguimfack Ndongmo and Ambe Harrison and Njimboh Henry Alombah and René Kuate-Fochie and Derek Ajesam Asoh and Godpromesse Kenné},
title = {Adaptive terminal synergetic-backstepping technique based machine learning regression algorithm for MPPT control of PV systems under real climatic conditions},
journal = {ISA Transactions},
year = {2024},
volume = {145},
publisher = {Elsevier},
month = {feb},
url = {https://doi.org/10.1016/j.isatra.2023.11.040},
pages = {423--442},
doi = {10.1016/j.isatra.2023.11.040}
}