Open Access
Machine learning and structure-based modeling for the prediction of UDP-glucuronosyltransferase inhibition
Тип публикации: Journal Article
Дата публикации: 2022-11-01
PubMed ID:
36304105
Multidisciplinary
Краткое описание
Summary
UDP-glucuronosyltransferases (UGTs) are responsible for 35% of the phase II drug metabolism. In this study, we focused on UGT1A1, which is a key UGT isoform. Strong inhibition of UGT1A1 may trigger adverse drug/herb-drug interactions, or result in disorders of endobiotic metabolism. Most of the current machine learning methods predicting the inhibition of drug metabolizing enzymes neglect protein structure and dynamics, both being essential for the recognition of various substrates and inhibitors. We performed molecular dynamics simulations on a homology model of the human UGT1A1 structure containing both the cofactor- (UDP-glucuronic acid) and substrate-binding domains to explore UGT conformational changes. Then, we created models for the prediction of UGT1A1 inhibitors by integrating information on UGT1A1 structure and dynamics, interactions with diverse ligands, and machine learning. These models can be helpful for further prediction of drug-drug interactions of drug candidates and safety treatments.Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
|
|
|
Trends in Pharmacological Sciences
1 публикация, 16.67%
|
|
|
ACS Omega
1 публикация, 16.67%
|
|
|
Pharmacological Research - Modern Chinese Medicine
1 публикация, 16.67%
|
|
|
Frontiers in Bioscience-Landmark
1 публикация, 16.67%
|
|
|
Chinese Medicine
1 публикация, 16.67%
|
|
|
Journal of Pharmaceutical Analysis
1 публикация, 16.67%
|
|
|
1
|
Издатели
|
1
2
|
|
|
Elsevier
2 публикации, 33.33%
|
|
|
American Chemical Society (ACS)
1 публикация, 16.67%
|
|
|
IMR Press
1 публикация, 16.67%
|
|
|
Springer Nature
1 публикация, 16.67%
|
|
|
Xi'an Jiaotong University
1 публикация, 16.67%
|
|
|
1
2
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
6
Всего цитирований:
6
Цитирований c 2024:
6
(100%)
Цитировать
ГОСТ |
RIS |
BibTex |
MLA
Цитировать
ГОСТ
Скопировать
Dudas B. et al. Machine learning and structure-based modeling for the prediction of UDP-glucuronosyltransferase inhibition // iScience. 2022. Vol. 25. No. 11. p. 105290.
ГОСТ со всеми авторами (до 50)
Скопировать
Dudas B., Bagdad Y., Picard M., Perahia D., Miteva M. Machine learning and structure-based modeling for the prediction of UDP-glucuronosyltransferase inhibition // iScience. 2022. Vol. 25. No. 11. p. 105290.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1016/j.isci.2022.105290
UR - https://doi.org/10.1016/j.isci.2022.105290
TI - Machine learning and structure-based modeling for the prediction of UDP-glucuronosyltransferase inhibition
T2 - iScience
AU - Dudas, Balint
AU - Bagdad, Youcef
AU - Picard, Milan
AU - Perahia, David
AU - Miteva, Maria
PY - 2022
DA - 2022/11/01
PB - Elsevier
SP - 105290
IS - 11
VL - 25
PMID - 36304105
SN - 2589-0042
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2022_Dudas,
author = {Balint Dudas and Youcef Bagdad and Milan Picard and David Perahia and Maria Miteva},
title = {Machine learning and structure-based modeling for the prediction of UDP-glucuronosyltransferase inhibition},
journal = {iScience},
year = {2022},
volume = {25},
publisher = {Elsevier},
month = {nov},
url = {https://doi.org/10.1016/j.isci.2022.105290},
number = {11},
pages = {105290},
doi = {10.1016/j.isci.2022.105290}
}
Цитировать
MLA
Скопировать
Dudas, Balint, et al. “Machine learning and structure-based modeling for the prediction of UDP-glucuronosyltransferase inhibition.” iScience, vol. 25, no. 11, Nov. 2022, p. 105290. https://doi.org/10.1016/j.isci.2022.105290.